Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
F
FilterDCA
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Maureen MUSCAT
FilterDCA
Commits
adfad9b7
Commit
adfad9b7
authored
Dec 18, 2019
by
Maureen MUSCAT
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Initial commit
parent
994652a1
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
37 additions
and
36 deletions
+37
-36
FilterDCA-checkpoint.ipynb
.ipynb_checkpoints/FilterDCA-checkpoint.ipynb
+16
-17
FilterDCA.ipynb
FilterDCA.ipynb
+16
-17
read_me.md
read_me.md
+5
-2
results.dat
results.dat
+0
-0
No files found.
.ipynb_checkpoints/FilterDCA-checkpoint.ipynb
View file @
adfad9b7
...
...
@@ -26,7 +26,6 @@
"source": [
"import pandas\n",
"import numpy as np\n",
"import sys\n",
"import scipy.stats\n",
"import matplotlib.pyplot as plt\n",
"import pickle\n",
...
...
@@ -35,7 +34,7 @@
},
{
"cell_type": "code",
"execution_count":
4
,
"execution_count":
2
,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -92,7 +91,7 @@
},
{
"cell_type": "code",
"execution_count":
5
,
"execution_count":
3
,
"metadata": {},
"outputs": [
{
...
...
@@ -117,7 +116,7 @@
},
{
"cell_type": "code",
"execution_count":
6
,
"execution_count":
4
,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -128,7 +127,7 @@
},
{
"cell_type": "code",
"execution_count":
7
,
"execution_count":
5
,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -138,16 +137,16 @@
},
{
"cell_type": "code",
"execution_count":
9
,
"execution_count":
6
,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.colorbar.Colorbar at 0x7f
8f6a28989
8>"
"<matplotlib.colorbar.Colorbar at 0x7f
dffc8074a
8>"
]
},
"execution_count":
9
,
"execution_count":
6
,
"metadata": {},
"output_type": "execute_result"
},
...
...
@@ -180,7 +179,7 @@
},
{
"cell_type": "code",
"execution_count":
10
,
"execution_count":
7
,
"metadata": {
"scrolled": true
},
...
...
@@ -194,7 +193,7 @@
},
{
"cell_type": "code",
"execution_count":
11
,
"execution_count":
8
,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -204,7 +203,7 @@
},
{
"cell_type": "code",
"execution_count":
12
,
"execution_count":
9
,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -216,16 +215,16 @@
},
{
"cell_type": "code",
"execution_count": 1
3
,
"execution_count": 1
0
,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.colorbar.Colorbar at 0x7f
8f04a546
30>"
"<matplotlib.colorbar.Colorbar at 0x7f
df7f652d
30>"
]
},
"execution_count": 1
3
,
"execution_count": 1
0
,
"metadata": {},
"output_type": "execute_result"
},
...
...
@@ -250,7 +249,7 @@
},
{
"cell_type": "code",
"execution_count": 1
9
,
"execution_count": 1
1
,
"metadata": {},
"outputs": [
{
...
...
@@ -259,7 +258,7 @@
"Text(0.5, 1.0, 'Predicted contact map')"
]
},
"execution_count": 1
9
,
"execution_count": 1
1
,
"metadata": {},
"output_type": "execute_result"
},
...
...
@@ -284,7 +283,7 @@
},
{
"cell_type": "code",
"execution_count":
null
,
"execution_count":
12
,
"metadata": {},
"outputs": [],
"source": [
...
...
FilterDCA.ipynb
View file @
adfad9b7
...
...
@@ -26,7 +26,6 @@
"source": [
"import pandas\n",
"import numpy as np\n",
"import sys\n",
"import scipy.stats\n",
"import matplotlib.pyplot as plt\n",
"import pickle\n",
...
...
@@ -35,7 +34,7 @@
},
{
"cell_type": "code",
"execution_count":
4
,
"execution_count":
2
,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -92,7 +91,7 @@
},
{
"cell_type": "code",
"execution_count":
5
,
"execution_count":
3
,
"metadata": {},
"outputs": [
{
...
...
@@ -117,7 +116,7 @@
},
{
"cell_type": "code",
"execution_count":
6
,
"execution_count":
4
,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -128,7 +127,7 @@
},
{
"cell_type": "code",
"execution_count":
7
,
"execution_count":
5
,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -138,16 +137,16 @@
},
{
"cell_type": "code",
"execution_count":
9
,
"execution_count":
6
,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.colorbar.Colorbar at 0x7f
8f6a28989
8>"
"<matplotlib.colorbar.Colorbar at 0x7f
dffc8074a
8>"
]
},
"execution_count":
9
,
"execution_count":
6
,
"metadata": {},
"output_type": "execute_result"
},
...
...
@@ -180,7 +179,7 @@
},
{
"cell_type": "code",
"execution_count":
10
,
"execution_count":
7
,
"metadata": {
"scrolled": true
},
...
...
@@ -194,7 +193,7 @@
},
{
"cell_type": "code",
"execution_count":
11
,
"execution_count":
8
,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -204,7 +203,7 @@
},
{
"cell_type": "code",
"execution_count":
12
,
"execution_count":
9
,
"metadata": {},
"outputs": [],
"source": [
...
...
@@ -216,16 +215,16 @@
},
{
"cell_type": "code",
"execution_count": 1
3
,
"execution_count": 1
0
,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.colorbar.Colorbar at 0x7f
8f04a546
30>"
"<matplotlib.colorbar.Colorbar at 0x7f
df7f652d
30>"
]
},
"execution_count": 1
3
,
"execution_count": 1
0
,
"metadata": {},
"output_type": "execute_result"
},
...
...
@@ -250,7 +249,7 @@
},
{
"cell_type": "code",
"execution_count": 1
9
,
"execution_count": 1
1
,
"metadata": {},
"outputs": [
{
...
...
@@ -259,7 +258,7 @@
"Text(0.5, 1.0, 'Predicted contact map')"
]
},
"execution_count": 1
9
,
"execution_count": 1
1
,
"metadata": {},
"output_type": "execute_result"
},
...
...
@@ -284,7 +283,7 @@
},
{
"cell_type": "code",
"execution_count":
null
,
"execution_count":
12
,
"metadata": {},
"outputs": [],
"source": [
...
...
read_me.md
View file @
adfad9b7
...
...
@@ -12,10 +12,13 @@ To use the script you need:
-
and to set the size of the M effictive ('medium' if under 200 and 'big' otherwise).
In the 2 folders you can find:
-
the 6 maps (3 corresponding to helix-helix contact, and 3 for strand-strand contacts) for each of the possible
s size
(5, 13, 21, 37, 45 or 69)
-
the classifier and the 'min'/'max' values to normalise the correlation/ pattern score
-
the 6 maps (3 corresponding to helix-helix contact, and 3 for strand-strand contacts) for each of the possible
sizes
(5, 13, 21, 37, 45 or 69)
-
the classifier
(logistic regression)
and the 'min'/'max' values to normalise the correlation/ pattern score
You can then produice :
-
the pattern score: the best correlation score matrix
-
the matrix of probabililty of contact
-
and finaly the predicted contact map
The code is a iPython3 notebook, severals package are needed: pandas, numpy, scipy, matplotlib, pickle and sklearn.
results.dat
0 → 100644
View file @
adfad9b7
This source diff could not be displayed because it is too large. You can
view the blob
instead.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment