Commit adfad9b7 by Maureen MUSCAT

Initial commit

parent 994652a1
......@@ -26,7 +26,6 @@
"source": [
"import pandas\n",
"import numpy as np\n",
"import sys\n",
"import scipy.stats\n",
"import matplotlib.pyplot as plt\n",
"import pickle\n",
......@@ -35,7 +34,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
......@@ -92,7 +91,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 3,
"metadata": {},
"outputs": [
{
......@@ -117,7 +116,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
......@@ -128,7 +127,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
......@@ -138,16 +137,16 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.colorbar.Colorbar at 0x7f8f6a289898>"
"<matplotlib.colorbar.Colorbar at 0x7fdffc8074a8>"
]
},
"execution_count": 9,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
},
......@@ -180,7 +179,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 7,
"metadata": {
"scrolled": true
},
......@@ -194,7 +193,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
......@@ -204,7 +203,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
......@@ -216,16 +215,16 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.colorbar.Colorbar at 0x7f8f04a54630>"
"<matplotlib.colorbar.Colorbar at 0x7fdf7f652d30>"
]
},
"execution_count": 13,
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
},
......@@ -250,7 +249,7 @@
},
{
"cell_type": "code",
"execution_count": 19,
"execution_count": 11,
"metadata": {},
"outputs": [
{
......@@ -259,7 +258,7 @@
"Text(0.5, 1.0, 'Predicted contact map')"
]
},
"execution_count": 19,
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
},
......@@ -284,7 +283,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
......
......@@ -26,7 +26,6 @@
"source": [
"import pandas\n",
"import numpy as np\n",
"import sys\n",
"import scipy.stats\n",
"import matplotlib.pyplot as plt\n",
"import pickle\n",
......@@ -35,7 +34,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
......@@ -92,7 +91,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 3,
"metadata": {},
"outputs": [
{
......@@ -117,7 +116,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
......@@ -128,7 +127,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
......@@ -138,16 +137,16 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.colorbar.Colorbar at 0x7f8f6a289898>"
"<matplotlib.colorbar.Colorbar at 0x7fdffc8074a8>"
]
},
"execution_count": 9,
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
},
......@@ -180,7 +179,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 7,
"metadata": {
"scrolled": true
},
......@@ -194,7 +193,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
......@@ -204,7 +203,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
......@@ -216,16 +215,16 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.colorbar.Colorbar at 0x7f8f04a54630>"
"<matplotlib.colorbar.Colorbar at 0x7fdf7f652d30>"
]
},
"execution_count": 13,
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
},
......@@ -250,7 +249,7 @@
},
{
"cell_type": "code",
"execution_count": 19,
"execution_count": 11,
"metadata": {},
"outputs": [
{
......@@ -259,7 +258,7 @@
"Text(0.5, 1.0, 'Predicted contact map')"
]
},
"execution_count": 19,
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
},
......@@ -284,7 +283,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
......
......@@ -12,10 +12,13 @@ To use the script you need:
- and to set the size of the M effictive ('medium' if under 200 and 'big' otherwise).
In the 2 folders you can find:
- the 6 maps (3 corresponding to helix-helix contact, and 3 for strand-strand contacts) for each of the possibles size (5, 13, 21, 37, 45 or 69)
- the classifier and the 'min'/'max' values to normalise the correlation/ pattern score
- the 6 maps (3 corresponding to helix-helix contact, and 3 for strand-strand contacts) for each of the possible sizes (5, 13, 21, 37, 45 or 69)
- the classifier (logistic regression) and the 'min'/'max' values to normalise the correlation/ pattern score
You can then produice :
- the pattern score: the best correlation score matrix
- the matrix of probabililty of contact
- and finaly the predicted contact map
The code is a iPython3 notebook, severals package are needed: pandas, numpy, scipy, matplotlib, pickle and sklearn.
This source diff could not be displayed because it is too large. You can view the blob instead.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment