Deleted unnecessary print of metrics from predict_string

parent 57089d62
...@@ -42,22 +42,6 @@ def main(params): ...@@ -42,22 +42,6 @@ def main(params):
print(data.sort_values(by=['preds'], ascending=False).to_string()) print(data.sort_values(by=['preds'], ascending=False).to_string())
# Calculate torch metrics based on data['binary_label'] and data['preds']
torch_labels = torch.tensor(data['binary_label'])
torch_preds = torch.tensor(data['preds'])
print('Accuracy: ',
Accuracy(threshold=pred_threshold, task='binary')(torch_preds, torch_labels))
print('Precision: ',
Precision(threshold=pred_threshold, task='binary')(torch_preds, torch_labels))
print('Recall: ',
Recall(threshold=pred_threshold, task='binary')(torch_preds, torch_labels))
print('F1Score: ',
F1Score(threshold=pred_threshold, task='binary')(torch_preds, torch_labels))
print('MatthewsCorrCoef: ',
MatthewsCorrCoef(num_classes=2, threshold=pred_threshold, task='binary')(torch_preds, torch_labels))
print('ROCAUC: ',
AUROC(task='binary')(torch_preds, torch_labels))
string_ids = {} string_ids = {}
string_tsv = pd.read_csv('string_interactions.tsv', delimiter='\t')[ string_tsv = pd.read_csv('string_interactions.tsv', delimiter='\t')[
['preferredName_A', 'preferredName_B', 'stringId_A', 'stringId_B']] ['preferredName_A', 'preferredName_B', 'stringId_A', 'stringId_B']]
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment