Commit 8b8e4e33 by Yasser Mohseni

Initial commit

parents
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Effects of point mutations on the PPI"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Representation of 3D structure of proteins"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**PDB format:**\n",
"![](./PDB.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Different types of representation:**\n",
"![](./PDB2.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Single point mutations"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Below is an example of single point mutation: Non-synonymous substitution of an amino acid with\n",
"small side-chain (Alanine in yellow) by an amino acid with larger side-chain (Tryptophan\n",
"in white). In this mutation both wild-type and mutant amino acids, Tryptophan (Trp\n",
"or W) and Alanine (Ala or A), have the hydrophobic (non-polar) side-chains. However,\n",
"the size of side-chain is dramatically changed and if it happens on the interaction surface\n",
"it can affect the geometrical properties of the binding site."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![](./pointmutation.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Effects of three amino acid substitutions on the geometrical and chemical properties of interaction surface of protein complex 1IAR. We use Alanine, Tryptophan, and Glutamic acid (An amino acid with a negatively charged side-chain). The interaction surface changes its shape on the region in which\n",
"these three single point mutations happen. Moreover, these mutations change the charge\n",
"distribution and electronegativity of the surface which are parts of chemical properties\n",
"of the interaction site. For example, mutation from Glutamic acid to Alanine affects\n",
"chemical properties and in turn geometry of the binding site. Point mutations on the interaction site can causes changes in the binding affinity."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![](./Alanine.png)\n",
"![](./Tryptophan.png)\n",
"![](./GlutamicAcid.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Numerical measurement of the changes of binding affinity "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The most reliable methods to experimentally measure binding affinity between two proteins: \n",
"\n",
"- Isothermal Titration Calorimetry (ITC)\n",
"- Surface Plasmon Resonance (SPR)\n",
"- Spectroscopy (SP)\n",
"- Fluorescence (FL)\n",
"- Stopped-Flow Fluorimetry (SF)\n",
"\n",
"Advantages:\n",
"- Good accuracy\n",
"\n",
"Drawbacks:\n",
"- Expensive and hard processes \n",
"\n",
"**Solution: Computational approaches are proposed to numerically measure the binding affinity and its changes by exploiting the properties of protein complexes.**\n",
"\n",
"Fortunately the size of experimental databases of binding affinity is large enough to develop machine learning models and predict unknown binding affinity for given two proteins. These approaches analyzes input\n",
"protein complexes from different perspectives and extract various descriptors. One of these approaches is Local Interaction Signal Analysis (LISA) [R. Raucci, et al., ‘18]. According to LISA the geometrical\n",
"distribution of favorable and non-favorable regions are principle determinants of the value\n",
"of binding affinity.\n",
"\n",
"![](./distribution.png)\n",
"\n",
"Furthermore, a catergory of numerical approaches are developed to predict the changes of the binding affinity, among these approaches are FLEX ddG [K. A. Barlow, et al., 2018] and iSEE [C. Geng, et al., 2019]. \n",
"\n",
"\n",
"\\begin{equation}\n",
" \\Delta\\Delta G_{complex} = (G_{complex}^{MT} - G_{partner 1}^{MT} - G_{partner 2}^{MT}) - (G_{complex}^{WT} - G_{partner 1}^{WT} - G_{partner 2}^{WT})\n",
" \\label{eq:calculddg}\n",
"\\end{equation}\n",
"\n",
"Challenges:\n",
"- Mutagenesis and estimation of the structure of mutant protein complex.\n",
"- Identification of fine descriptors for prediction of changes of binding affinity."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Conformational models of complex"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Packages:\n",
"\n",
"Mutagenesis\n",
"- Pymol Package\n",
"- Non-optimized side-chain orientation angles\n",
"- Fixed backbone\n",
"\n",
"MODELLER\n",
"- Optimized side-chain orientation angles\n",
"- Fixed backbone\n",
"- Deterministic optimization process \n",
"\n",
"Rosetta Backrub\n",
"- Conformational sampling\n",
"- Simulation of near-native conformational fluctuations\n",
"- Flexible backbone\n",
"- For side-chains: Discrete combinatorial rotamer optimization (Repacking)\n",
"- For backbone and side-chain: continuous optimization of torsion angles\n",
"\n",
"![](./backbone.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Simulation of near-native conformational fluctuations"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is an example of near-native conformational fluctuations in which only the movement of backbone is shown. Complex: 5E9D."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![](./new_wt.gif)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Case study: Complex 1BRS"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Point mutations on 1BRS\n",
"From database SKEMPI v2 [J. Jankauskaitė, et al., 2018]"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"from IPython.display import HTML"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Complex</th>\n",
" <th>Mutation</th>\n",
" <th>Region</th>\n",
" <th>Method</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>DD35A</td>\n",
" <td>COR</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>DD35A</td>\n",
" <td>COR</td>\n",
" <td>SPR</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>DD39A</td>\n",
" <td>COR</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>DD39A</td>\n",
" <td>COR</td>\n",
" <td>SPR</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>EA71A,DD35A</td>\n",
" <td>SUP,COR</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>EA71A,DD39A</td>\n",
" <td>SUP,COR</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>EA71A</td>\n",
" <td>SUP</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>EA71C</td>\n",
" <td>SUP</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>EA71F,DD35A</td>\n",
" <td>SUP,COR</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>EA71F,DD39A</td>\n",
" <td>SUP,COR</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>EA71F</td>\n",
" <td>SUP</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>EA71Q,DD39A</td>\n",
" <td>SUP,COR</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>EA71Q,ED74A</td>\n",
" <td>SUP,RIM</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>EA71Q</td>\n",
" <td>SUP</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>EA71S</td>\n",
" <td>SUP</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Complex Mutation Region Method\n",
"0 1BRS_A_D DD35A COR ITC\n",
"1 1BRS_A_D DD35A COR SPR\n",
"2 1BRS_A_D DD39A COR ITC\n",
"3 1BRS_A_D DD39A COR SPR\n",
"4 1BRS_A_D EA71A,DD35A SUP,COR ITC\n",
"5 1BRS_A_D EA71A,DD39A SUP,COR ITC\n",
"6 1BRS_A_D EA71A SUP ITC\n",
"7 1BRS_A_D EA71C SUP ITC\n",
"8 1BRS_A_D EA71F,DD35A SUP,COR ITC\n",
"9 1BRS_A_D EA71F,DD39A SUP,COR ITC\n",
"10 1BRS_A_D EA71F SUP ITC\n",
"11 1BRS_A_D EA71Q,DD39A SUP,COR ITC\n",
"12 1BRS_A_D EA71Q,ED74A SUP,RIM ITC\n",
"13 1BRS_A_D EA71Q SUP ITC\n",
"14 1BRS_A_D EA71S SUP ITC"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mutations = pd.read_csv('1RBS_mudations.csv', sep=';')\n",
"mutations[:15]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**EA71Y: Glutamic Acid (E) which is located on position 71 of chain A is replaced by Tyrosine (Y)**"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <video width=\"700\" height=\"400\" controls>\n",
" <source src=\"EA71Y.mov\">\n",
" </video>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"HTML(\"\"\"\n",
" <video width=\"700\" height=\"400\" controls>\n",
" <source src=\"EA71Y.mov\">\n",
" </video>\n",
"\"\"\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**YD29F: Tyrosine (Y) which is located on position 29 of chain D is replaced by Phenylalanine (F)**"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <video width=\"700\" height=\"400\" controls>\n",
" <source src=\"YD29F.mov\">\n",
" </video>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"HTML(\"\"\"\n",
" <video width=\"700\" height=\"400\" controls>\n",
" <source src=\"YD29F.mov\">\n",
" </video>\n",
"\"\"\")"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Unnamed: 0</th>\n",
" <th>#Pdb</th>\n",
" <th>Affinity_mut</th>\n",
" <th>Affinity_wt</th>\n",
" <th>Method</th>\n",
" <th>Mutation(s)_cleaned</th>\n",
" <th>iMutation_Location(s)</th>\n",
" <th>score</th>\n",
" <th>V106</th>\n",
" <th>V46</th>\n",
" <th>...</th>\n",
" <th>fa_dun</th>\n",
" <th>fa_elec</th>\n",
" <th>fa_intra_rep</th>\n",
" <th>fa_rep</th>\n",
" <th>fa_sol</th>\n",
" <th>hbond_bb_sc</th>\n",
" <th>hbond_lr_bb</th>\n",
" <th>hbond_sc</th>\n",
" <th>hbond_sr_bb</th>\n",
" <th>pro_close</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>1BRS_A_D</td>\n",
" <td>-14.595226</td>\n",
" <td>-19.098395</td>\n",
" <td>ITC</td>\n",
" <td>DD35A</td>\n",
" <td>COR</td>\n",
" <td>-37.392028</td>\n",
" <td>22.734529</td>\n",
" <td>65</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>-14.584290</td>\n",
" <td>0.000000e+00</td>\n",
" <td>1.513075</td>\n",
" <td>31.330962</td>\n",
" <td>-6.881513</td>\n",
" <td>9.806911e-11</td>\n",
" <td>-4.818615</td>\n",
" <td>-4.110490e-11</td>\n",
" <td>-2.458034e-13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>1BRS_A_D</td>\n",
" <td>-14.595226</td>\n",
" <td>-19.098395</td>\n",
" <td>ITC</td>\n",
" <td>DD35A</td>\n",
" <td>COR</td>\n",
" <td>-41.479745</td>\n",
" <td>29.370056</td>\n",
" <td>84</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>-18.466217</td>\n",
" <td>2.042810e-14</td>\n",
" <td>2.128390</td>\n",
" <td>36.751555</td>\n",
" <td>-7.798639</td>\n",
" <td>-2.842171e-11</td>\n",
" <td>-7.662563</td>\n",
" <td>-9.567458e-11</td>\n",
" <td>-1.742217e-13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2</td>\n",
" <td>1BRS_A_D</td>\n",
" <td>-14.595226</td>\n",
" <td>-19.098395</td>\n",
" <td>ITC</td>\n",
" <td>DD35A</td>\n",
" <td>COR</td>\n",
" <td>-32.221446</td>\n",
" <td>25.681126</td>\n",
" <td>100</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>-16.997991</td>\n",
" <td>4.440892e-16</td>\n",
" <td>1.668417</td>\n",
" <td>31.362962</td>\n",
" <td>-4.863814</td>\n",
" <td>4.533263e-12</td>\n",
" <td>-6.452159</td>\n",
" <td>1.352873e-11</td>\n",
" <td>5.129785e-13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3</td>\n",
" <td>1BRS_A_D</td>\n",
" <td>-14.595226</td>\n",
" <td>-19.098395</td>\n",
" <td>ITC</td>\n",
" <td>DD35A</td>\n",
" <td>COR</td>\n",
" <td>-34.218212</td>\n",
" <td>17.109655</td>\n",
" <td>43</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>-17.429030</td>\n",
" <td>-2.442491e-14</td>\n",
" <td>3.349478</td>\n",
" <td>35.340195</td>\n",
" <td>-5.736393</td>\n",
" <td>-7.325696e-12</td>\n",
" <td>-6.270114</td>\n",
" <td>4.133938e-11</td>\n",
" <td>1.644240e-13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4</td>\n",
" <td>1BRS_A_D</td>\n",
" <td>-14.595226</td>\n",
" <td>-19.098395</td>\n",
" <td>ITC</td>\n",
" <td>DD35A</td>\n",
" <td>COR</td>\n",
" <td>-40.002270</td>\n",
" <td>35.231729</td>\n",
" <td>127</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>-11.282555</td>\n",
" <td>1.643130e-14</td>\n",
" <td>2.109373</td>\n",
" <td>31.870106</td>\n",
" <td>-4.113794</td>\n",
" <td>-5.879741e-11</td>\n",
" <td>-4.344624</td>\n",
" <td>-1.236131e-10</td>\n",
" <td>-3.168021e-13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>5</td>\n",
" <td>1BRS_A_D</td>\n",
" <td>-14.595226</td>\n",
" <td>-19.098395</td>\n",
" <td>ITC</td>\n",
" <td>DD35A</td>\n",
" <td>COR</td>\n",
" <td>-37.382208</td>\n",
" <td>19.726724</td>\n",
" <td>93</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>-14.458624</td>\n",
" <td>1.421085e-14</td>\n",
" <td>2.395334</td>\n",
" <td>32.678929</td>\n",
" <td>-5.381401</td>\n",
" <td>-4.822098e-11</td>\n",
" <td>-6.376751</td>\n",
" <td>2.201332e-10</td>\n",
" <td>1.242340e-12</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>6</td>\n",
" <td>1BRS_A_D</td>\n",
" <td>-14.595226</td>\n",
" <td>-19.098395</td>\n",
" <td>ITC</td>\n",
" <td>DD35A</td>\n",
" <td>COR</td>\n",
" <td>-35.716695</td>\n",
" <td>21.512385</td>\n",
" <td>73</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>-13.554698</td>\n",
" <td>3.907985e-14</td>\n",
" <td>2.297274</td>\n",
" <td>31.204003</td>\n",
" <td>-4.171211</td>\n",
" <td>-8.792966e-12</td>\n",
" <td>-5.514953</td>\n",
" <td>-2.501110e-12</td>\n",
" <td>8.615331e-13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>7</td>\n",
" <td>1BRS_A_D</td>\n",
" <td>-14.595226</td>\n",
" <td>-19.098395</td>\n",
" <td>ITC</td>\n",
" <td>DD35A</td>\n",
" <td>COR</td>\n",
" <td>-35.638698</td>\n",
" <td>20.364375</td>\n",
" <td>90</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>-12.544474</td>\n",
" <td>-2.220446e-15</td>\n",
" <td>1.925979</td>\n",
" <td>31.691630</td>\n",
" <td>-5.339372</td>\n",
" <td>-4.988010e-12</td>\n",
" <td>-5.801806</td>\n",
" <td>-1.359481e-10</td>\n",
" <td>8.776313e-14</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>8</td>\n",
" <td>1BRS_A_D</td>\n",
" <td>-14.595226</td>\n",
" <td>-19.098395</td>\n",
" <td>ITC</td>\n",
" <td>DD35A</td>\n",
" <td>COR</td>\n",
" <td>-36.422295</td>\n",
" <td>17.993875</td>\n",
" <td>85</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>-17.583214</td>\n",
" <td>8.437695e-15</td>\n",
" <td>2.653895</td>\n",
" <td>37.434678</td>\n",
" <td>-7.270043</td>\n",
" <td>-2.137313e-11</td>\n",
" <td>-7.812436</td>\n",
" <td>-3.205969e-11</td>\n",
" <td>2.871314e-13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>9</td>\n",
" <td>1BRS_A_D</td>\n",
" <td>-14.595226</td>\n",
" <td>-19.098395</td>\n",
" <td>ITC</td>\n",
" <td>DD35A</td>\n",
" <td>COR</td>\n",
" <td>-39.976612</td>\n",
" <td>25.388679</td>\n",
" <td>67</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>-14.494545</td>\n",
" <td>-1.820766e-14</td>\n",
" <td>1.128513</td>\n",
" <td>30.227993</td>\n",
" <td>-5.908867</td>\n",
" <td>-7.850787e-11</td>\n",
" <td>-5.013727</td>\n",
" <td>-2.022915e-11</td>\n",
" <td>-1.971756e-13</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>10 rows × 29 columns</p>\n",
"</div>"
],
"text/plain": [
" Unnamed: 0 #Pdb Affinity_mut Affinity_wt Method Mutation(s)_cleaned \\\n",
"0 0 1BRS_A_D -14.595226 -19.098395 ITC DD35A \n",
"1 1 1BRS_A_D -14.595226 -19.098395 ITC DD35A \n",
"2 2 1BRS_A_D -14.595226 -19.098395 ITC DD35A \n",
"3 3 1BRS_A_D -14.595226 -19.098395 ITC DD35A \n",
"4 4 1BRS_A_D -14.595226 -19.098395 ITC DD35A \n",
"5 5 1BRS_A_D -14.595226 -19.098395 ITC DD35A \n",
"6 6 1BRS_A_D -14.595226 -19.098395 ITC DD35A \n",
"7 7 1BRS_A_D -14.595226 -19.098395 ITC DD35A \n",
"8 8 1BRS_A_D -14.595226 -19.098395 ITC DD35A \n",
"9 9 1BRS_A_D -14.595226 -19.098395 ITC DD35A \n",
"\n",
" iMutation_Location(s) score V106 V46 ... fa_dun fa_elec \\\n",
"0 COR -37.392028 22.734529 65 ... 0 -14.584290 \n",
"1 COR -41.479745 29.370056 84 ... 0 -18.466217 \n",
"2 COR -32.221446 25.681126 100 ... 0 -16.997991 \n",
"3 COR -34.218212 17.109655 43 ... 0 -17.429030 \n",
"4 COR -40.002270 35.231729 127 ... 0 -11.282555 \n",
"5 COR -37.382208 19.726724 93 ... 0 -14.458624 \n",
"6 COR -35.716695 21.512385 73 ... 0 -13.554698 \n",
"7 COR -35.638698 20.364375 90 ... 0 -12.544474 \n",
"8 COR -36.422295 17.993875 85 ... 0 -17.583214 \n",
"9 COR -39.976612 25.388679 67 ... 0 -14.494545 \n",
"\n",
" fa_intra_rep fa_rep fa_sol hbond_bb_sc hbond_lr_bb hbond_sc \\\n",
"0 0.000000e+00 1.513075 31.330962 -6.881513 9.806911e-11 -4.818615 \n",
"1 2.042810e-14 2.128390 36.751555 -7.798639 -2.842171e-11 -7.662563 \n",
"2 4.440892e-16 1.668417 31.362962 -4.863814 4.533263e-12 -6.452159 \n",
"3 -2.442491e-14 3.349478 35.340195 -5.736393 -7.325696e-12 -6.270114 \n",
"4 1.643130e-14 2.109373 31.870106 -4.113794 -5.879741e-11 -4.344624 \n",
"5 1.421085e-14 2.395334 32.678929 -5.381401 -4.822098e-11 -6.376751 \n",
"6 3.907985e-14 2.297274 31.204003 -4.171211 -8.792966e-12 -5.514953 \n",
"7 -2.220446e-15 1.925979 31.691630 -5.339372 -4.988010e-12 -5.801806 \n",
"8 8.437695e-15 2.653895 37.434678 -7.270043 -2.137313e-11 -7.812436 \n",
"9 -1.820766e-14 1.128513 30.227993 -5.908867 -7.850787e-11 -5.013727 \n",
"\n",
" hbond_sr_bb pro_close \n",
"0 -4.110490e-11 -2.458034e-13 \n",
"1 -9.567458e-11 -1.742217e-13 \n",
"2 1.352873e-11 5.129785e-13 \n",
"3 4.133938e-11 1.644240e-13 \n",
"4 -1.236131e-10 -3.168021e-13 \n",
"5 2.201332e-10 1.242340e-12 \n",
"6 -2.501110e-12 8.615331e-13 \n",
"7 -1.359481e-10 8.776313e-14 \n",
"8 -3.205969e-11 2.871314e-13 \n",
"9 -2.022915e-11 -1.971756e-13 \n",
"\n",
"[10 rows x 29 columns]"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"features_mt = pd.read_csv('1BRS_features.csv', sep=';')\n",
"features_mt[:10]"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"def DoBoxPlot(pdb_name, df): \n",
" df = df[df[\"#Pdb\"] == pdb_name]\n",
" data = []\n",
" expr_b_aff = []\n",
" est_res = \"score\"\n",
" mutations = \"-\"\n",
" data_tmp = []\n",
" for index, row in df.iterrows():\n",
" if row[\"Mutation(s)_cleaned\"] != mutations:\n",
" expr_b_aff.append(float(row[\"Affinity_mut\"]))\n",
" if data_tmp != []:\n",
" data.append(data_tmp)\n",
"\n",
" data_tmp = []\n",
" mutations = row[\"Mutation(s)_cleaned\"]\n",
" data_tmp.append(row[est_res])\n",
" data.append(data_tmp)\n",
" \n",
" pred_b_aff = []\n",
" for data_tmp in data:\n",
" pred_b_aff.append(np.median(data_tmp))\n",
" \n",
" #Boxplot\n",
" plt.figure(figsize=(10,7))\n",
" boxplotElements = plt.boxplot(data,\n",
" sym = 'go', whis = 1.2,\n",
" widths = [0.8]*len(data), positions = range(len(data)),\n",
" patch_artist = True)\n",
" \n",
" for element in boxplotElements['medians']:\n",
" element.set_color('red')\n",
" element.set_linewidth(2)\n",
" for element in boxplotElements['boxes']:\n",
" element.set_edgecolor('navy')\n",
" element.set_facecolor((0,0,0,0))\n",
" element.set_linewidth(2)\n",
" element.set_fill(False)\n",
" for element in boxplotElements['whiskers']:\n",
" element.set_color('purple')\n",
" element.set_linewidth(2)\n",
" for element in boxplotElements['caps']:\n",
" element.set_color('black')\n",
" \n",
" plt.gca().yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5)\n",
" plt.gca().set_axisbelow(True)\n",
" \n",
" plt.plot(range(len(data)),expr_b_aff,'b*-', label = 'Experimental')\n",
" plt.plot(range(len(data)),pred_b_aff,'r-', label = 'Prediction')\n",
" \n",
" top = -4\n",
" for tick in range(len(data)):\n",
" plt.text(tick, top - (top*0.05), len(data[tick]),\n",
" horizontalalignment='center', size='x-small', weight='bold',\n",
" color='k') \n",
" \n",
" plt.ylim(-50, 0)\n",
" plt.title(pdb_name + ': Distribution of estimated $\\Delta$G ')\n",
" plt.xlabel(\"Mutations\")\n",
" plt.ylabel('$\\Delta$G (kcal/mol)')\n",
" plt.tight_layout()\n",
" plt.legend()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAHwCAYAAAC7apkrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAACgjklEQVR4nOzdd3wU1dcG8OeG3qvSIaioICBdo2KjSBEQFUV5bagIir2LCqhR7NgVURGN/rCBoqAEFLEhTRSCICgQutQAhpKQ8/5xdpNNsptsmdmZ3X2+fPYTtt29W2b3zJ1zzzUiAiIiIiIiUklOd4CIiIiIyE0YIBMRERER+WCATERERETkgwEyEREREZEPBshERERERD4YIBMRERER+WCATERERETkgwEyEREREZEPBshERBEyxmQYY862ui1jzDpjTHcr2i3adjQZY04wxiw1xuwzxtxi4+M48vyCYYyZZIx5zOl+EFFwGCATUT5jzEhjzCJjzCFjzKQi160zxhwwxuw3xuw2xnxljGkS4PqtnoCgapE2zjDG/GyMyTLG7DLG/GSM6Rxk3+Z6HrdCCM/H26d9xpg9nscebowJ+rsvmDZE5CQRmRtEO6UGu8G0Fayij2ll2yG6B8B3IlJNRF60okF/r6edz8/qnZUAjxHwM26MGWyM+dUY858x5l/P/280xhg7+0SUqBggE5GvzQAeA/B2gOv7iUhVAA0AbAPwUoDr2wFoD+B+7xXGmOoAvvTcpzaARgDGAjhUWqeMMckAugIQAP2DfjYFfaoGoBmAcQDuBfCWA22UyBhT1sr2XKYZgAynO+Fmns94WwB/oshn3BhzJ4AXADwNoD6AegCGAzgdQPmodpQoQTBAJqJ8IvKZiEwDsLOU2x0E8AmAVgGu3wrgG2ig7HW857oPReSIiBwQkVki8kcQXbsSwHwAkwBcFcTt/fUpS0S+AHApgKuMMa2tasN3dNEYc68xZpNnxHmVMaabMeY9AE0BTPeMsN/jc797jTF/APjPGFPWz0hlZ2PMCs/I4jvGmIreK4wxYow5zud8/mF8f49ZtG1jTEvPqOUeT3pCf5/r1hlj7jLG/OEZ8Z/i+9i+SmnnWwDnAHjZ04/j/dy/oTHmU2PMdmPMWt80jDBeT9/nt84Yc7fnOfxnjHnLGFPPGDPT095sY0wtz23vM8b87bl8hTFmoE87/l7LgH323Ke9MWaJp70pAPy+dj6uBDAVRT7jxpgaAB4BcKOIfCIi+0T9JiJDRKTUHUwiCh0DZCIKmTGmMjRInB/g+sYAegNY43PxXwCOGGPeNcb09gYmQboSQJrndJ4xpl54PQdEZAGAjdARaRhjXjXGvBpJG17GmBMAjATQ2TPifB6AdSJyBYBMeEbYReQpn7tdBqAvgJoikuvn4YZ42jkWupPxYJB9LOkxYYwpB2A6gFkAjgZwM4A0z3PwugRALwDNoaObVxd9nNLaEZFzAfwAYKSnH38VuX+S5/6/Q48qdANwmzHmvDBfz6IuAtAD+tr1AzATwAMAjoL+BnoD27+h72cN6JGN940xDfy9lgCeCdRnz3MqD2AagPegR0s+9vSjJFcC+BC643muz2c8BUAFAJ+Xcn8ishADZCIKxTRjzB4AWdCg42k/1+8DsAHAvwBGe68Qkb0AzoCmSbwJYLsx5ovSgl1jzBnQQ/QfichiaCBzeYTPYzM0cIGI3CgiN0bSho8j0GCmlTGmnIisE5G/S2nnRRHZICIHAlz/suf6XQBSoQG1FU4FUBXAOBE5LCLfQlNgfNt/UUQ2ex57OgofEQilnZJ0BnCUiDziuf8/0M/HYIT3ehb1kohsE5FN0ED9V8/o60HoiG17ABCRjz3PNU9EpgBYDaBLGH0G9DUpB2C8iOSIyCcAFgbqoOczXgWap70LwBwUfMbrAtjhu/NkNA9+j9Hc+DNDfD2IKAgMkIkoFBeISE3o4eKRAL43xtQvcn01AGcDOBH6455PRP4UkatFpDGA1gAaAhhfymNeBWCWiOzwnP8AYaZZ+GgEYJfVbYjIGgC3ARgD4F9jzP+MMQ1LaWdDCNevh75mVmgIYIOI5BVpv5HP+a0+/8+GBsLhtFOSZgAaegK+PZ4dsAcA1Avz9Sxqm8//D/g5XxUAjDFXGq204e1DaxT5/AbTZ8/1DQFsEhHxuc/6Evp4FXQH8IjnvO9nfCeAusYnR11ETvNshzvB33EiW3DDIqKQeXKIP4OO8J3h5/rvobmUz5TQxkrPbQLmAhtjKkEP859ltDLGVgC3AzjZGHNyOH03WjWjEYAfw7l/aW2IyAci4h31FgBPeq8K0Fygy72a+Py/KXTk2isbQGWf8747K6W1vRlAE1O4okdTAJtK6Y/V7WwAsFZEavqcqolIHyCs1zNkxphm0BHgkQDqeILP5QB8K0T4Pl6JfQawBUAjYwpVmGga4LG9n/EPfC7+AsBxns/4L9CJrAPCfoJEFDIGyESUz+gksYoAygAoY4ypaPxUVzBqAIBa0Fn3/owH0MMbyBpjTjTG3OnJT4bREnGXIUAes8cF0CC8FfTwfjsALaGHyq8M8blVN8acD+B/AN4XkWWh3D+YNozW+z3XaJmug9ARSu/I6jYAx4T6mABuMsY0NsbUBjAKwBSf65YCuNwYU8YY0wvAWUXuW9Jj/goNsO8xxpQzWj+4n+e5hSLSdhYA2Gd0Ml4lz3NpbYzpbNPr6U8VaAC8HQCMMdeg+I6b7+MF7LPn+l8A5AK4xfOaXIjA6RoXQI9E/O7Z3ipCP/MzAFwpInugOdGvGmMuNsZUM8YkGWPaefpNRDZggExEvh6EBiH3Afg/z/99J4VNN8bsB7AXmg97lYj4Ld8lItsBTAbwsOeifQBOAfCrMeY/aGC8HMCdJfTnKgDviEimiGz1ngC8DGCIv+Ddj+k+edGjADwH4BrvlcaY140xr0fSho8K0DJwO6DpCUejoNTdEwAe9BySvyuIfnt9AJ0A9w80/9p3sYlbocHoHuhkvmlF7hvwMUXksOe+vT39fRUakK0MoW8Rt+NJKzgfuvOz1tPGROhkOTteT399WAHgWWhguw1AGwA/FblZ/uNBj2IE6rP3NbkQOqlxF3RC62cBHv4qAMnQbc33NAiez7hnEuId0HrS2zynN6DlBn8O/5kTUSCmcIoUEREREVFi4wgyEREREZGPmAiQjTG9jBaIX2OMuc/p/hCRdYwxTY0uvuDv5HdikxX3JSIiCsT1KRbGmDLQBQZ6QAvzLwRwmSdnjIiIiIjIUrEwgtwFwBoR+ccz8eF/YLkbIiIiIrJJMDPAndYIhQvlb4TOhM9njBkGYBgAVKlSpeNxxx0Xvd4RERERUUz6/fffd4jIUUUvj4UAuVQiMgHABADo1KmTLFq0yOEeEREREZHbGWP8rnIZCykWm1B4JanGCH2lJyIiIiKioMRCgLwQQAtjTHNjTHkAg6HLcBIRERERWc71KRYikmuMGQngG+jyt28HWrmLiIiIiChSrg+QAUBEZkDXpSciIiJyrZycHGzcuBEHDx50uivko2LFimjcuDHKlSsX1O1jIkAmIiIiigUbN25EtWrVkJycDGOM090hACKCnTt3YuPGjWjevHlQ94mFHGQiIiKimHDw4EHUqVOHwbGLGGNQp06dkEb1GSATERERWYjBsfuE+p4wQCYiIiIi8sEAmYiIiCiOlClTBu3atcs/jRs3ztbH++KLL2x/jLlz5+Lnn38u9XaTJk3CyJEjI348TtIjIiIictCWLcDgwcCUKUD9+pG3V6lSJSxdujTyhoKQm5uL/v37o3///rY+zty5c1G1alWcdtpptj6OF0eQiYiIiBz06KPAjz8Cjzxi32NkZWXhhBNOwKpVqwAAl112Gd58800AQNWqVXH77bfjpJNOQrdu3bB9+3YAwN9//41evXqhY8eO6Nq1K1auXAkAuPrqqzF8+HCccsopuOeeewqN2l599dUYMWIETj31VBxzzDGYO3cuhg4dipYtW+Lqq6/O78+sWbOQkpKCDh06YNCgQdi/fz8AIDk5GaNHj0aHDh3Qpk0brFy5EuvWrcPrr7+O559/Hu3atcMPP/yA6dOn45RTTkH79u3RvXt3bNu2zdLXiyPIRERERDa47TagpIHcH34A8vIKzr/2mp6SkoCuXf3fp107YPz4kh/3wIEDaNeuXf75+++/H5deeilefvllXH311bj11luxe/duXH/99QCA//77D506dcLzzz+PRx55BGPHjsXLL7+MYcOG4fXXX0eLFi3w66+/4sYbb8S3334LQMvZ/fzzzyhTpgwmTZpU6PF3796NX375BV988QX69++Pn376CRMnTkTnzp2xdOlSNG7cGI899hhmz56NKlWq4Mknn8Rzzz2Hhx9+GABQt25dLFmyBK+++iqeeeYZTJw4EcOHD0fVqlVx11135T/G/PnzYYzBxIkT8dRTT+HZZ58t+YUJAQNkIiIiIgd06QL88w+wY4cGyklJQN26wLHHRtZuoBSLHj164OOPP8ZNN92E33//Pf/ypKQkXHrppQCA//u//8OFF16I/fv34+eff8agQYPyb3fo0KH8/w8aNAhlypTx+/j9+vWDMQZt2rRBvXr10KZNGwDASSedhHXr1mHjxo1YsWIFTj/9dADA4cOHkZKSkn//Cy+8EADQsWNHfPbZZ34fY+PGjbj00kuxZcsWHD58OOj6xsFigExERERkg9JGegFgxAhgwgSgYkXg8GHgoouAV1+1pz95eXn4888/UblyZezevRuNGzf2eztjDPLy8lCzZs2AucxVqlQJ+DgVKlQAoIG39//e87m5uShTpgx69OiBDz/8sMT7lylTBrm5uX5vc/PNN+OOO+5A//79MXfuXIwZMyZgf8LBHGQiIiIih2zbBgwfDsyfr3+3brXvsZ5//nm0bNkSH3zwAa655hrk5OQA0MD5k08+AQB88MEHOOOMM1C9enU0b94cH3/8MQBdjc531DkSp556Kn766SesWbMGgKZ4/PXXXyXep1q1ati3b1/++aysLDRq1AgA8O6771rSL18MkImIiIgc8tlnwCuvACefrH8DZBSExJuD7D3dd999WLVqFSZOnIhnn30WXbt2xZlnnonHHnsMgI4GL1iwAK1bt8a3336bnwuclpaGt956CyeffDJOOukkfP7555F3DsBRRx2FSZMm4bLLLkPbtm2RkpKSPwEwkH79+mHq1Kn5k/TGjBmDQYMGoWPHjqhbt64l/fJlRMTyRp3UqVMnWbRokdPdICIiogT0559/omXLlk53IyRVq1bNryIRz/y9N8aYxSLSqehtOYJMREREROSDATIRERFRAkuE0eNQMUAmIiIiIvLBAJmIiIiIyAcDZCIiIiIiHwyQiYiIiIh8MEAmIiIiiiNlypRBu3bt0Lp1awwaNAjZ2dlht3X11VfnLyJy3XXXYcWKFQFvO3fuXPz888/5519//XVMnjw57Md2EgNkIiIiojhSqVIlLF26FMuXL0f58uXx+uuvF7o+0PLNpZk4cSJatWoV8PqiAfLw4cNx5ZVXhvVYTmOATERERBSnunbtijVr1mDu3Lno2rUr+vfvj1atWuHIkSO4++670blzZ7Rt2xZvvPEGAF1SeuTIkTjhhBPQvXt3/Pvvv/ltnX322fAuxvb111+jQ4cOOPnkk9GtWzesW7cOr7/+Op5//vlCq90988wzAIClS5fi1FNPRdu2bTFw4EDs3r07v817770XXbp0wfHHH48ffvghyq+Qf2Wd7gARERFRXLrtNmDpUmvbbNcOGD8+qJvm5uZi5syZ6NWrFwBgyZIlWL58OZo3b44JEyagRo0aWLhwIQ4dOoTTTz8dPXv2xG+//YZVq1ZhxYoV2LZtG1q1aoWhQ4cWanf79u24/vrrMW/ePDRv3hy7du1C7dq1MXz4cFStWhV33XUXAGDOnDn597nyyivx0ksv4ayzzsLDDz+MsWPHYrzneeTm5mLBggWYMWMGxo4di9mzZ0f8MkUqYUaQv/vuOyQnJ6NGjRro3bs31q9fjy5duqBhw4YYMWKE4+0BwOrVq3HcccfBGIOvv/4a48ePR5UqVdC4cWP07dvXFW0mYh8T8TnHQh8T8Tknah+t/r6NheeciH1MxOcMAHl5edj/33/Yt28fcnNzcfjwYezbvx/79+9H9oEDIbd38OBBHDhwAMcffzzat2+PunXrokOHDlizZg3atGmD5s2bAwBmzZqFyZMno127djjllFOwc+dOrF69GvPmzcNll12GMmXKoGHDhjj33HNx+PBhLFu2DPv27cP+/fvx9ddfo3Xr1ti7dy9Wr16N2rVrl9inrKws7NmzB2eddRYAYPDgwfjmm2+waNEi5Obm4uyzz8aSJUtQsWJFrF69OqznvGzZMixatAhZWVnYtm0blixZgt9//z2s9oAEGkFOSUnB2rVrMXfuXPTs2RPjxo1DcnIyvv32Wxx11FG4/PLL0bVrV8faA4DmzZtj1apVKFu24G0pX748ypQpg+7du4fUll1tJmIfE/E5x0IfE/E5J2ofrf6+jYXnnIh9jMvnHMRIrxFBFQCLFy9GixYtcPDgQWzevBllypRBvXr1ULlevZD6WKFCBVSqVAkffPBBofaMMahWrVr+7UQEL730Es4777xC958xY0axNsuVK4fWrVsX7rcxMMagevXqIfUP0NesUqVKhc4bY1CmTBnk5eWF3F6FChXQunVrLF682JL+AdAXKJ5OHTt2lEBGjhwpFSpUkF69esm5554rd911l4iINGrUSCZNmhTwftFqzwuAzJw5UzZv3iyHDh2Szz//XJKSkmTXrl2uaTMR+5iIzzkW+piIzzkR+2jH963bn3Oi9jHWn/OKFSvCanPhwoWyZ88eOXTokBw5ckR2794tCxculJycnJDbqlKlSrH2pk+fLmeccUZ+e2+88YYMGDBADh8+LCIiq1atkv3798unn34qPXv2lNzcXNm8ebPUrFlTPv74YxER6dChg3z33XeyceNGady4sSxdulQWLlwo27ZtExGRZ555Rh5++OH8fowePVqefvppERFp27atzJs3L//y2267TRYuXCinn366/Pzzz3LkyBFZs2aNNGjQIKznHMxr6O+9AbBI/MSTCZNikZWVhZdeegnLly/H119/jby8PKxfvx779u3Dzp07ccwxxzjanj9bt25FUlISKlSoABEJa6/K7jYTsY+J+JxjoY+J+JwTpY92f9+68Tmzj4n5nAHNx/WOflrB215R1113HVq1aoUOHTqgdevWuOGGG5Cbm4uBAweiRYsWaNWqFa688kqkpKQUu2+tWrXwxhtv4IorrsDll1+Oyy+/HADQr18/TJ06NX+Snq93330Xd999N9q2bYulS5fi4Ycfzr/uyJEjtjzniNrzFzXH8inQCPILL7wgjRo1klq1asmAAQNkxYoV0qlTJ6lfv74MGzbM731KYnV7IiKrV6+WOnXqCACpXr26jBkzRurXry9HHXWUjBs3zhVtJmIfE/E5x0IfE/E5J2ofrf6+jYXnnIh9jJfnHOoI8oEDB+S3336ThQsXypIlS2TTpk2ydOlS+e2332Tz5s0h99Hq9mKhj8G2F8oIstHr4kenTp3EW4KEiIiIKJr+/PNPtGzZ0ulukB/+3htjzGIR6VT0tgmTYkFEREREFAwGyEREREQWirej8/Eg1PeEATIRERGRRSpWrIidO3cySHYREcHOnTtRsWLFoO+TMHWQiYiIiOzWuHFjbNy4Edu3b3e6K+SjYsWKaNy4cdC3Z4BMREREZJFy5crlr1ZHsYspFkREREREPhggExERERH5YIBMREREROSDATIRERERkQ8GyEREREREPhggExERERH5YIBMREREROSDATIRERERkQ8GyEREREREPhggExERERH5YIBMREREROSDATIRERERkQ8GyEREREREPhggExERERH5YIBMREREROSDATIRERERkQ8GyEREREREPhggExERERH5YIBMREREROSDATIRERERkQ8GyEREREREPhggExERERH5YIBMREREROSDATIRERERkQ8GyEREREQh2rIFOOssYOtWp3tCdmCATERERBSiRx8FfvwReOQRp3tCdmCATERERBSkSpUAY4DXXgPy8vSvMXo5xQ8GyERERERB+ucf4PLLgbJl9XzFisCQIcDatc72i6zFAJmIiIgoSA0aAFWqALm5ev7QIaB6daB+fWf7RdYq63QHiIiIiGLJ77/r39q1NUDessXZ/pD1OIJMREREFIJatYDGjYFXXgH++w8YPtzpHpHVGCATERERBWndOmDWLGDoUGDgQKBOHeCtt5zuFVmNATIRERFRkN5+W/8OHQpUqABccQUwbRqwY4ej3SKLMUAmIiIiCkJurgbI550HNGumlw0dCuTkAGlpzvaNrMUAmYiIiCgI33wDbNoEXH99wWVt2gCdO2uahYhzfSNrMUAmIiIiCsKbbwL16gH9+hW+fOhQYNkyYPFiZ/pF1mOATERERFSKLVuAL78Err4aKFeu8HWXXaYr6XGyXvxggExERERUinfeAY4cAa69tvh1NWoAF18MfPABkJ0d/b6R9RggExEREZUgLw+YOBE4+2ygRQv/txk6FNi7F/jss6h2jWzCAJmIiIioBN9+C6xdW3hyXlFnnQUceyzTLOIFA2QiIiKiEkycqMtKX3hh4NsYA1xzDTB3LvD331HrGtmEATIRERFRADt2AFOn6oIgFSuWfNurrgKSkjRfmWIbA2QiIiKiACZPBg4fBq67rvTbNm6si4hMmqQT+ih2MUAmIiIi8kNEax+feirQunVw97n2Wl1MZNYse/tG9nI8QDbGDDLGZBhj8owxnYpcd78xZo0xZpUx5jyn+khERESJ56efgJUrS56cV1S/fkDdupysF+scD5ABLAdwIYB5vhcaY1oBGAzgJAC9ALxqjCkT/e4REREFb8sWrWiwdavTPaFITZwIVKsGXHpp8PcpX17zlb/4Ati+3b6+kb0cD5BF5E8RWeXnqgEA/icih0RkLYA1ALpEt3dEREShefRR4McfgUcecbonFIk9e4CPPgIuvxyoUiW0+w4dCuTkAO+/b0vXKArKOt2BEjQCMN/n/EbPZcUYY4YBGAYAjRs3xq5du+zvHRERkY+GDWvh0CGTf/611/RUoYJg8+bdDvaMwvHWWxVw4EAVXHJJFnbtCm3GXcOGQIcO1TFhAnDllXthTOn3IXeJSoBsjJkNoL6fq0aJyOeRti8iEwBMAIBOnTpJ7dq1I22SiIgoJGvXamrF6tV6vkIFXX74mWcM+LsUW0R02ej27YFzz60RVhs33KCnv/+ujS48/h1zopJiISLdRaS1n1NJwfEmAE18zjf2XEZEROQ6M2YUBMfGAIcO6WH2+v6Gh8jVFi8Gli4NrrRbIIMHA5UqcbJerHI8B7kEXwAYbIypYIxpDqAFgAUO94mIiKiYBQuAG28EjjoKGD4cmDkTqFxZJ2pt4tBOzJk4UYPbIUPCb6N6dWDQIODDD4HsbOv6RtHheIBsjBlojNkIIAXAV8aYbwBARDIAfARgBYCvAdwkIiy7TURErrJtmy5B3LAh8Oefmnd83nnAzz8D5coBffoAe/c63cvY4mQlkP37Nb3ikkuAGuFlV+S79lpg3z7gk0+s6RtFj+MBsohMFZHGIlJBROqJyHk+16WKyLEicoKIzHSyn0REREXl5GggtWuXLkdcp07BdSefrIHRihWai5yT41w/Y42TlUA++kiD2lBqHwfStStw3HFMs4hFjgfIREREsequu4B58/SQfLt2xa/v2ROYMAFITweGDdPJXxRYpUqav/3aa0Benv41Ri+PljffBFq2BE47LfK2jNGSb/PmFeSnU2xggExERBSGyZOBF18Ebr9da+UGcs01wOjRwKRJwNixUeteTPrnH6BvX+SXRStTRl/btWuj8/jLlwPz5+vosVWl2a66CkhKAt55x5r2KDoYIBMREYVoyRIt4XX22cBTT5V++9GjNVAeOxZ4+23buxezMjOB2bN1pL1MGeDIEWDVquhVAnnzzYKV8KzSsCHQuzfw7rtAbq517ZK9GCATERGFYMcOYOBArVjx0UdA2SBWFDAGeOMNoEcPTbX45hv7+xlrZs4Ezj1XA+MhQ4BFi4ATT9SSax9/bP/jHzwIvPeevrd161rb9rXXAps3832PJQyQLeLkjFsiIoqO3Fzg0ku1csXUqRokB6tcOZ2017q1TtpbutS2bsacyZOB/v2BE07QNIv339ec7qVLgVNPBa6+Gvj9d3v78NlnwO7d1kzOK6pvX/2scLJe7GCAbJGHHnJuxi1FD3eEiBLbffcB334LvP460LFj6PevXh346iugZk0t/5aZaXkXY84zz2ie7llnAXPnAvXqFVxXoYIGrjVrAgMG6Oi9Xd58EzjmGOCcc6xvu3x54MorgenTgX//tb59sh4D5Ah5Z9y+9ZZzM24pepwsPUREzvrwQ+DZZ4GRI3VEM1yNGmk6wX//aZC8Z49VPYwteXnAnXcCd9+tpfK++kp3IIpq0EBH67du1YU37CiXt3q1BufXXacT6uwwdKgegXjvPXvaJ2sxQI7QqlXFc5WqVgWeflonF1B8cEPpoWBxlJvIer//rnmkXbsCzz0XeXutW2vQ99dfusjIoUORtxlLDh/WEdXnngNuvll3PipUCHz7Ll10hHfuXK0aYrWJEzX3OZIdn9K0aqXpIm+/zXJ/sYABcoRefVUP+RgDVKyofytU0A2+TRvNN8vLc7qXioFTeA4e1JFj35GN8uV1Ekm0Sg+FgqPcRNbatUsnbtWqpZPyypWzpt1zz9Vg6bvvNPhOlKBp/37NN05LA1JTgRdeCG7U9oordMT5lVc0WLZKTo6W4Dv/fB2tttO11+rCMb/+au/jePF3P3wMkCMwYwbw5JNAcjIwYoTWThwxQkcYPvpIv+wGDQI6dNC8I6e//JgnHZodOzTYbNZMDwGWK6c7QMbo6Ef16tErPRSMWBrlJooVR44Al10GbNoEfPqp9dv8//0f8NhjGiw++KC1bbvR9u26Y5CerqO2DzwQWr3hceN08ZWbbgJ++smaPnnzgu2YnFfUJZcAlStHb7LeI4/wdz9sIhJXp44dO0o0bNggUqeOSNu2ItnZ/m+Tmyvy3nsixx4rAoh06SLyzTcieXlR6aKIiKxcKVK2rD5+0VPFitHrRyz56y+RESNEKlXS16lPH5E5c0QGDhS58UaRe+7Ry886y+meFrZ5s8jll4uUKVPw/g4ZIrJli9M9I4pd992n29Obb9r3GHl5Itdfr4/zxhv2PY7T1q4VadFCv5s+/zz8dnbtEjnuOJF69UQyMyPvV69eIo0b6292NFx9tUjVqiL799v3GBUr8nc/WAAWiZ940vGA1upTNALknByR00/XD/jKlaXf/vBhkYkTRZo21Ve8a1eRuXPt6VtensjChSIPPCDSsmXBRlG7togx+v9KlRg4FZWXJ/LDDyIDBujrVL68yLXXimRkFL/tvn0iNWuKXHxx1LtZqksuKfxlOHy40z0iil0ff6zb0Q032P9YOTm6M56UJPLVV/Y/XrT9/rtIgwYitWqJ/Phj5O1lZOhvcMeOgQepgrFunX7nP/xw5H0K1rx5+rl65x37HmPGjIJBHu8pOVnkzz/te8xYxQDZQt4RhbS00O538KDIyy/rlwQg0r27yC+/RN6fnByRb78VuflmkSZNtO0yZUTOOUfkxRd1D3v48IIA2RgdISV97aZM0dF9747Egw+WvvNw7736Q/bPP9HpZ7CaNtX3fuRIfT4dOjjdI/LavFnkzDO5Yxorli8XqVJFJCVFv7ujYd8+3WarVBFZtCg6jxkNc+eKVK8u0qiRvq5W+fxz/Z4bMiT8I7MPP6y/ievWWdev0uTliRx/vA6W2SEtTUeKq1bV51axov41Rt+Db76x53FjFQNki8ycqa/a9deH30Z2tsizz4ocdZS21bevyOLFobfx+ed6qKZOHck/dNK/v+6V7thR+PYDB2pQ3Lq1bjQDBoTf/3iwd6/I+PG6Rw3o4bpXXxX577/g7r9xo6au3HKLvf0Mxbp12qdbbxU5ckS/fGvVYkDmFiNG6E4Vd07db/du/U6oX19k06boPvaWLSLNmmn6wNq10X1sO3z6qUiFCnpEc/1669t/9FH9Dn/66dDvm5urqRW9elnfr9KMG6f9XrXKujaPHBG5/37JP1Ldp4+mBS5dqn/POafgyPKNN9qb4hFLGCBbYONGkbp1Rdq0ieyQjte+fSKPP65BDCBy4YUiy5bpdf5Gm3bvFnn/fZGLLtIRBkCkRg3de/7kE22vNF9+qfd7++3I+x8Lir6OGzfq6G/Nmvo6nHGGyNSp4eWeXXGFvg+7dlna5bCNHClSrlxBTt7KlZoqcsklzvYr0TEXMLYcOaKBRdmy1qQChGPFCv2OOvFEkZ07nemDFV57TXcKTz21+KCNVfLyRAYN0seZOTO0+371lW6Ln35qT99KsnmzHu27915r2tu7VwfIAJHrrhM5dMj/7bKzRe64Q0eTW7Sw5ih2rGOAHKGcHN0jq1LF+hyePXtERo8WqVZNP7SXXaanpCSRK6/UL5mePQsm29WvrykT33wTeCMIJC9PpH17HR3JybH2ebiRd9Ru0CB9LcuVKzg/f35kbS9dqu/HuHHW9DUSW7dqwDV0aOHLH3tM+xjJhBgK319/6bZavnxBYFyuHOcAuNlDD+n79Oqrzvbj++/1c9O1q6ZyxVJ6Tl6eyJgxkn+ENNgjc+Hav18nzNeoEdqI7AUXiBx9dOi/o1bp109/zyP9Lf7nHz06XKaMplUGk27y3XeakpeUJDJqlHOvgRswQI7QAw/oq/X++7Y0LyK6h+2tQFD0ZIzI3XeL/PyzjnBE4tNPJawc6lgSaNSuTBlr84a7dxdp2ND5L5f779fPSNFJo4cO6RGPRo1EsrKc6VuiOXxYJ3d161bwmWveXN+fpCS9rH9/p3tJ/kybpu/P0KHRrTYUyIcfan+OPTZ20nNyc3VSI6ApgIcPR+dx167VdMMTT9RBp9J4R3Dvucf2rgU0daq+Tl98EX4b332nz7tmTZH09NDum5Ulcs012od27QqOYCcaBsgR+Ppr/XG79lrLmy5m82ZNtfCOFpcrp3vgmzdb9xhHjoicdJJIq1aRB9tutXmzjg74jtoNGmT9CIw3J33yZGvbDcWePToBJlBVjV9/1c/vTTdFt1+JZu1a3ZGuV08/E02b6gj+5s0FJQJ/+klHuSpU0FF/co8//9SjeJ07ixw44HRvVCyl52zerClrffpoH++7L/o7Gd99p0Fv376lp809/rj286+/otI1vw4f1u+LCy4I7/6vvaaxwoknRvY8pk3TOVHly2sud7TK3bkFA+QwefOOW7e2/zCR1/DhOlpQsaJ9owYffKDv/scfW9+2W3jrT1eoYN/rmJenOxtt2zo34vTEE/o8S5roedttGiQ7lVMZr3Jy9Meld++CEeJ+/TS3MdCPzB9/6LZ97rmJ90PkRps3i5x2mn5fHHWUNXV1rbJ5s6bb+dayr1VLg0+3lesaOrSgj88/71w/Xn5Z+/DAA4Fvc+SIyDHHiJx9dvT6Fcjdd+v7G8oO8+HDusMN6HdPMCPmpdm2rWBQ6cwz3VehyU4MkMOQk6MflMqVddJEtHhHm7wzTwcOtP4xcnO1zMzJJ7vjUKLVZs/WT3enTva+jiIib72ljxXq4S0rZGdrDt1555V8u337dGZ8y5bRK1kVzzZs0HkDjRrpe9+woZaLCja48n5moll7lfwbPrwgsLOrPn0kvAMmFSroTtjRRxf0t2VLLUu5ZEn0v8cPHdIdbrctRJWXp5PUAJH//c//bebMEdekGf75p/blqaeCu/2OHbpzDYjcdZe1O9l5eSLvvqtHJKtW1fUb4jE+KIoBchgefFBfoXfftaxJV5k0SSLOf3KjQ4dETjhBR4Sicaj04EE9TOZEqSDvaEkwP+zedJDRo23vVlwoWgElN1eL7/fvrwGLMfqeT50a+iSbvDyRq67SNmbNsrrnFIxYSV/wN2CyYYPISy/pCKg3r715c5E779Q0HjtS53JytOLB44+L9OihA0fe16xmzYJAuXJl5yehHjqki3lVqiTy22/Frx88WEfi3ZJKc9ppmiZRWjCakaG/a+XL6++3XdavLwjCzz8/diaHhosBcohmzdIfr6JVAeLJ4cNaB7hz5/jaS/Tmls2YEb3H9NbitLIIfmkOH9ZR4ZSU4N+/IUM0Hzua/YxV3gooV10lkpqqrzWgI3j33x/5Icj9+zU956ijol9rl3QH6NJLC4I8NwR24fj3Xx3p69NHt21AF6O68UY9khZuhYScHJEFC3Rks3dvHVH0vlatW2tZyU8/1RHNaKQFhmrrVq1x3LSpvkZe27drgOmmGvYTJ+rr+tNPgW8zfbrmyNerp5P17XbkiMgLL+h7WqeOlpKNVwyQQ7Bpk/5onXRS9PKOnfLGG/opiJeVddat01GDCy+M7uPu2KGPG80dqsmT9b2bPj34+/z7r37ZpaTE7wTNSAUaWUxK0lUXraxYsmKFlo7s2jUxyi66zRln6Htbvrx7ArtI7NmjaQMXXVQwwlu7tlYqmD698IipvyMkixfrIlbnn6+H2X1TOUaMEPnoI81VLSoaaYHhWLhQt+czzyyopvHcc/qc3FSxYe9e/R7w9/uRlyfy5JM6YNehQ/Rz5Fes0FRFQGv/794df6uCMkAOUm6uHraqXFkPZ8S7gwd1L/uMM+JjFHnAAH3vnJhoc+ON+kMbjS+NI0f0R6tNm9Dft/fe0y3/5Zft6Vus27y5oEQboIeO+/Wz7331vh/33WdP++TfgQMaPNWvr4fh3RTYWeG//0Q++0zk//5PK6cAOgI5eLAGutdeq0HX6afr96Z3wSpA56cMG6Zl5mI9CHr/fX1ON96og1+VKmmg6TZDh2qQ7Lvg14EDGpQCuuCTUwN2hw9rXesyZTRe6NcvPnYovRggB+nhh/VVsTO/x21efFGf83ffOd2TyHhXCXRq4Y7Vq/UHZ9Qo+x/LWz8znEkmeXk6qa9qVXfN2HeLjIyChT3srIDi6/rr9fG++srex6EC3u+9b791uif2O3RI5yB4P2eBasS//75Wboo3d9+tz/HEE/WvG6pXFPXjj9q3Z5/V0dmlS0W6dNHLHn3UHQNYvgseuTlvP1SBAmSj18WPTp06yaJFi8K67+zZQM+ewFVXAe+8Y3HHXOzAAaB5c6B1a30NYtGBA8BJJwEVKwJLlwLlyzvTj4EDgXnzgMxMoEoVex5DBDj1VGDHDmDVKqBs2dDbWLdOX69zzwW++AIwxvJuxqStW/W13boVGDQIuOsuYMIEYMsW4LPP7HvcAweAlBRgwwbgt9+Apk3teyzS1/uYY4ATTgDmznW6N9G1cSNwzTX6vHNz9TvzoouAZ54B6td3unf2qFQJOHiw+OUVK+pnwQ1EgJYtgawsYNs27bMxwHvv6e+KG2zZAtx2G/Dpp8CRI/rbc8klwLPPxvZnxxizWEQ6Fb08yYnOuNGWLcCQIfoBffllp3sTXZUqAXffDcyZA/zyi9O9Cc8TTwBr1wKvvupccAwAd94J7NoFvPuufY/x7bfAggXAPfeEFxwDQHIy8NhjwJdfAh99ZGn3Ytb+/cD55wPbtwM//aQ/TCefDLzyir3BMaDb4McfAzk5wKWXAocP2/t4ie6NN3QnaOxYp3sSfY0bA8cdB+TlaYB4+DBQvXpsBzil+ecf4OKLCwYCKlfW3/u1a53tl6/KlXXAY+tWDZazs4H//gMuv9zpnhVo0ACoXVv7V6aM7mD9/DNQo4bTPbMHA2TontCQIcC+fRos2DXy52Y33ADUqQM8+qjTPQnd6tXAk0/qF8nZZzvbl9NPB7p0AZ5/Xj9XdnjiCf0xu+qqyNq55Ragc2fg5puBnTut6Vusys0FLrtMR2+nTAE6dox+H1q0AN56C5g/H7j//ug/fqLIzgbGjQPOOQc46yyne+OMbduA4cP1szZ8uAZl8axBA6BuXQ2QK1bU0WS37RT880/hkeJKldwXxAMFn53Fi4EzztCjkd26xelviL+8i1g+hZODPHq05tG8807Id40rqan6Oixa5HRPgufNp61e3drluCMxZYq+jlOnWt/2ggUSUlH50ixdqpPQrr7amvZiUV6e5hgDunSr00aOtO/zQ5rjCYjMm+d0Tyia3Fppw5cby+WV5pNPdK7GCSfE7up7YA6yf99+C3TvDlxxhb2HxWPB3r1As2Y6Cjt1qtO9Cc4nn2iu6Asv6IioG+Tm6mhg48bADz9Y2/aFFwLffac5ztWqWdPmqFHA448D6em6LSSap5/WdJV77tEjEU47dEhHZlavBpYs0VxZssZ//+nr2batft6J3OTCC3W0e9iw6Mx9sMqPPwL9+2t644wZQIcOTvcoNIFykBM6QN66FWjXTnNqFi5MzNSKokaPBh55BPjjD6BNG6d7U7L9+4ETTwSOOkrfv3Dzce3wwgs6mWH+fOCUU6xpc8UKnVj30EP6Hlnl4EHNtc3NBZYt01y4RPHRR5rze+mlwAcfAEkuSTpbuxZo315zRX/6CahQwekexQfvztBPPwGnneZ0b4jix59/Ar166RycTz/VggexgpP0fGzZApx5po487t2buHnH/tx6K1C1KpCa6nRPSvfII8CmTToxz03BMQAMHaoTF5591ro2n3xSg1erR8orVtTRin/+AcaMsbZtN/vpJ+DKK3W0dtIk9wTHgFaVmTRJ8/zuusvp3sSH/fuBp57SH24Gx0TWatlSJ/kfcwzQty8webLTPYqci34SoufRR/WQwI8/asWK1q2d7pF71K4NjBypOw0rVzrdm8AyMnQi3LXXankst6lWTSc+fvqpNZMs1q/XEc7rr9fJJlY76yxt+9ln9bB+vPvrLz0k2KwZMG2a7iS4zQUXAHfcod9RrDQSuVde0dKIiVi5gigaGjbUMqdnnaWTyB9/XCtexKqESrGIhVqIbvDvv1oGbNAgd+Zli2ie9PLlWhbHjoDRChs36kjgTTcB48dH1tbNN2tpqr//Bpo0saR7xezZo6MA9etrGbly5ex5HKf9+6/uVO3bpyMexx7rdI8Cy8nRH5vly3U0uUULp3sUm/bt022xc2dg5kyne0MU3w4f1qOoaWnAjTcCL76oZeHciikW0EPIl19eMFrk1jIqTjv6aC3jkpamr5nbpKXpXuq4ce4NjgGdpDd4sJbu2rMn/Ha2bQMmTtSJpHYFxwBQs6aOsi1dqqPz8Sg7W0eOt2wBpk93d3AM6E7KlCn6d9Ag7siH6+WXtQwVR4+J7Fe+vKZY3HOPpkBefHFsfnclVIDcoIHWPjx8WIPkQ4fcVwvRLe66S/N6n3jC6Z4UtmePLsZxyimaXuF2d96puY8TJoTfxgsv6Gf1nnus61cgF16otThHjwbWrLH/8aLpyBHg//5PR8c/+MC6yZN2a9JEFy35/Xed+Emh2btXJ+f17as1yonIfklJOm/mxReBzz/XCkmxVis5oQJkIPEKpIerYUMNQN99V0uKucVDD2ke4auvumtSVSDt2mkR9RdfDG91tKwsHdW96CJdFjcaXn5ZRwBuuCG288eKuusuLV/4/POa3xtL+vQB7rtPd7Tef9/p3sSWF18Edu9OrAmoRG5x8826SujixbqQ1rp1TvcoBP6KI8fyKZyFQsi/9etFypUTuekmp3uiFi/W4ukjRzrdk9DMmKELE0yeHPp9n3hC77t4sfX9Kskbb+jjvv12dB/XLi+8oM/n1lud7kn4cnJEunYVqVxZZMUKp3sTG/bsEalZU6RfP6d7QpTY5s3TbbF+fZElS5zuTWHgQiEUjuuv18O7a9dqiopT8vK0NNO6dVpdo2ZN5/oSKhGtlFKunC5lbExw9ztwQCdLtm8PfP21rV0sJi+vYCLkihWxnYY0bZqmjlxwgY5kuHmySGk2b9ajEkcfDfz6K8tTluaRRzRdaPHi2Fu8gCjerFihtZJ379YFUHr0cLpHipP0KCz33acLSDzzjLP9eOstDQiefjq2gmNAA+I77tAc0m+/Df5+b7+tFRfuv9++vgWSlAS8+aauPHbrrTqp7ayzYi8l6ddfgcsu09zT99+P7eAY0NSnDz7QH5qbbord9yUa9uwBnnsOGDCAwTGRG7RqVVAruU8fHXxzMwbIVKJjj9XKH6+/Dmzf7kwfduzQQP3MM3WSVSwaMkRH/YJdOCQnR3cGTjtNn7cTTjgBePhhrcE7dKjWDbdyBT+7/f030K+fBpVffBE/KwR2767vy7vv6ucq1t6XaBk/XnP4mXtM5B6NGmkVqjPP1IWannhCj4y5cUefKRZUqpUrdc/vvvu08He0XXedBgNLl+pSy7Hq0Uc1sMnI0NezJO+9p18e06cD558fnf75E6u1w3fu1J2LHTt0xOL4453ukbVi9X2Jlt27NT2pe3ddrIeI3OXwYeCaa/SI2Ekn6VLVN9ygE/CjjSkWFLYTT9QarC+/rOusR9Mvv2h6xW23xXZwDAAjRmhg89xzJd8uL0/3qtu00dJUTvrnH+C88wrOx0Lt8IMHNd94/XotLxRvwTGg78uFFxbks5cv7/73JZqee07Lu40e7XRPiMif8uU1DxnQQaO8POC11/Q7rVIlZ/vmxQCZgvLgg7oa1YsvRu8xc3M1qGzUKD5+6OrWBa6+WkeHSzqU9MUXujd9333BT+izS4MGugKZtx8HDmg9YbdO2svL09f4xx/1qMMZZzjdI3s0aKApO8Zovvjhw8CyZe5eOCdadu3S2uEXXwy0bet0b4goEO/ibWXL6vkKFdy1o88AmYLSpo2Oyr3wgo7MRMOrr+rEtvHjgapVo/OYdrv9ds0vfuUV/9eL6OjxMccAl1wS3b4Fsm2b7qh88IHu2X/yCfDDD073qjDvZLWbb9aV5556Crj0Uqd7ZS9vTfdff9Xt848/dIb4jh1O98xZzz6ri/PEw041UTzzLt6Wl6c7+4cOaZDslgEY5iBT0BYvBjp10jxkuysrbNmiqR0pKcDMmc6PpFrpggt0hDMzs/jEsTlzNG/y9dc1H8tt1q3TIGztWh0Jd0sQf+ON+pqJaDD/yivx9ZkJxqRJGjA3aKCl7U4+2ekeRd+OHXrEo08f3VEiIne78EL9zjrtNJ2E36xZ9BcTCZSDzACZQtKnD7BwoX6A7azBOmSIjlQuXw60aGHf4zjhhx90Bu+rr2ow56t7d83HWrtWJ1y50a5dWjrrxx+1/N8ddzgXjHKyWmELFugPzq5dwDvvxP8oelH33adHD5YvL30iLBG5y7336vabnq6/hdHCSXpkCe9Sz2+8Yd9jfPedHs6/9974C44BzYvt3FmXPM7LK7h84UIdQb7jDvcGxwBQu7Z+gV18sS7ffNttmpfshK+/1v54xcIkQjt16QIsWgR07AgMHqzbkFPvTbRt364TiQcPZnBMFIvGjNHf/Ouv1zQppzFAppCkpADnnqs1eu0YoVu/Xis3NGnizAIZ0WAMcOedwOrVWsbN64kndBGU4cMd61rQKlbUQ9i3364TNwcNiu6IbW6uvl49e+piJsZonw4d0pw2t+SwOaF+fd3RGjFCR2P69Il+9RkneL+THn7Y6Z4QUTgqVdIFstavBx54wOneMECmMDz0kFZheOst69u+9FL9kWvd2j2lXuxw0UWaa+VdOGTFCmDqVJ1kVq2as30LVlKSltMaP15zXrt1i84EsWXLgFNP1S/QAQP0cUeMAObP150LtxWbd0L58prCM2GCHpHp3FlfNydEY7W/f//VvPPLLtO5C0QUm844Q1cJffll4KefnO0Lc5ApZCKaQ/v337rS3scflz5iJ6LVL3bs0EUcduwo/P8nn/R/KDiec0nHj9cR2F9/1R/3Tz7RPedYLNX16aea2tC0qaY9HHOM9Y+RkwOMG6cLrtSsqQHgxRdb/zjx5pdfdIds714tfXfRRdF9/Btv1JQsOxcBuOsuTVn688/4rHtNlEj279dBsgoVdIEwuwfLOEmPLPXNN1rNwBigd2/N+/MGvYGC4Nxc/22VKaMBT06Obhh5eVrdYeBAnQQWr4fL9+3TVJITT9Qg+frrdcQvVv30E9C/v9a0/PJLHbW0yu+/66pLv/2mn7WXXorNHQmnbN6sgfH8+cCoUcDYsbrd2cmb8uLvcit3erdu1R2yiy8GJk+2rl0ick56uqbQ3XuvDozYKVCAXNbeh6V45Fs5QASYMUNPgP7o1q0L1Kmjf48/Xv/6Xlb0/9Wr6+H6ESM0QKxYUduP91zSatWAYcM0dxLwX40hlpx+OvDzz7rjdPbZmqMc6TLZhw9rWcHUVP3MfPaZ7jhRaBo2BObOBUaO1Nfyt9+AtDTdMbWKiFZg+fRTfZ/8Bcdt2ugEXCs9+aR+Th56yNp2icg5PXoAQ4fqINnFF2uJ2WjjCDKFbMsWPaQ5daqOBFWooMsRP/WUBsThlvzy1kMcNkwD5S1bCpaijEfxWqJs61YNjH/7TQ+ph1vPeckSHTX+4w+tjzl+vAbJFD4RTXe4+WatF/z550DLlpG1t3ChbqeffaYTT43RnaULL9Ta6R9+qEcVDh/W+1SoAFxxhaYXRVptYssWHT0ePFjL2hFR/NizR78j6tbV6jzly9vzOCzzRpbxrn5z6JAGczk5uhz0CSdEVg/3s880F/fkk/VvPAfHQMEym96SbpUrx0eJsvr1dbSyVy+dNPfAAxpIBevQIV3avEsXLd31xRe6KAmD48gZo+/Jt98CWVnAKadokByKI0eA778Hbr1Vc85POUUnmzZvrou1bN6stb5vvx3IztbHW7BAc5G7d9elwN9/HzjpJE3PSk8P7fPha9w4/f558MHw7k9E7lWzpn6nLFtmf5qFXyISV6eOHTsK2W/gQJEbbxRZulT/DhzodI9i0/DhIklJIhUr6t8RI5zukXVyckSuv14EEBkyROTQodLvs2CByEkn6X2uvlpk1y77+5moNmwQ6dxZX+vRo0WOHAl820OHRGbO1PfzqKP0PhUrigwYIPLuu6G/T9u3izz6qEi9etpWmzYi77wjcvBg8G1s3ChSoYLI0KGhPTYRxZbBg0XKlRNZtsye9gEsEj/xJFMsiBwU72klIppD/OCDWj/7s8+AGjWK3+7gQS0S//TT+nq8+aaOLpK9Dh7UEd5339UJlk8/rZNFp0zRo0Rff63v2Zdf6ohz1aqaPnPRRXqEoGrVyB7/0CFNwXjuOR0lqldP86SHDy99EubIkZou8tdfOnpNRPFp+3ZNtWjeXOe5lLV49hyrWBCRYyZPBq69VvNdZ8zQyZyDB2sgtnatTsZYuRK47jqdlOEviCZ7iGjN0dtv14mjWVlAcrLmkh84oKktAwbozly3bvas8iiii5s89xwwc6Y+xlVX6SqN/uoab9gAHHcccOWVujNFRPHtf//TOudPP61zoKzEAJmIHJWeriOP1asDp52m1Q7atNFJeI0bAxMnalkfir5AE0bLl9eVCq0esSnJihU6IXPyZB1h7ttXl18/5xzNod6yRZfS3r5dJwUmJ0evb0TkDBHggguAWbP0N6NFC+vaZoBMRI6rUKGgmkHRy2O9zF0sK1qZxg11yP/9VyfovPKK/v/kkzVQ/uYbLRXXqpWWlSOixLB5s273bdvqRPAki8pMsIoFETlu3To9XO+tdlKhglbuWLfOyV5R0co0bqhDfvTRwMMP6+qSEyfqqNFVVxXUUV6xQj9H8bwkPREVaNhQ07B++EF3nu3GAJmIoqZBAz0ZU1Ai0OlAjNS2bTo5bv58/bt1q9M9UhUrav76xo2aZuEdNYqXsohEFLxrrtFFRO69V3ee7cSV9IgoqryBmG/lDnKeb/WUV15xrh+BNGyotda//949o9xEFF3G6O9G69b6G/L115Gtv1ASBshEFFVuD8TIvbhzRUTJybpwyM03a4nKq6+253E4SY+IiIiIYkZeHnDWWcDy5TofoUGD8NviJD0iIiIiinlJScBbb2mq1Y03hr9cfYmPYX2TRERERET2Of54YOxYYNo04OOPrW+fATIRERERxZw77gA6ddKl53fssLZtBshEREREFHPKlgXefhvYswe49VZr22aATEREREQxqU0b4IEHdBGh6dOta5cBMhERERHFrAce0NrIw4fraLIVGCATERERUcwqX15TLbZuBW66SUvARboaKANkIiIiIoppnTsDd96pqRY//AA88khk7TFAJiIiIqKYVqkS8PTT+n8R4LXXdBnqSpXCa48BMhERERHFtH/+AS6/HKhQQc9XrAgMGQKsXRteewyQiYiIiCimNWgAVK8O5ORocHz4sJ6vXz+89hggExEREVHM27ZNK1nMn69/I5moV9a6bhEREREROeOzzwr+/8orkbXl+AiyMeZpY8xKY8wfxpipxpiaPtfdb4xZY4xZZYw5z8FuEhEREVGCcDxABpAOoLWItAXwF4D7AcAY0wrAYAAnAegF4FVjTBnHeklERERECcHxAFlEZolIrufsfACNPf8fAOB/InJIRNYCWAOgixN9JCIiIqLE4bYc5KEApnj+3wgaMHtt9FxWjDFmGIBhANC4cWPs2rXLzj4SERERURyLSoBsjJkNwF+hjVEi8rnnNqMA5AJIC7V9EZkAYAIAdOrUSWrXrh1Bb4mIiIgokUUlQBaR7iVdb4y5GsD5ALqJiHgu3gSgic/NGnsuIyIiIiKyjeM5yMaYXgDuAdBfRLJ9rvoCwGBjTAVjTHMALQAscKKPRERERJQ43JCD/DKACgDSjTEAMF9EhotIhjHmIwAroKkXN4nIEQf7SUREREQJwPEAWUSOK+G6VACpUewOERERESU4x1MsiIiIiIjchAEyEREREZEPBshERERERD4YIBMRERER+WCATERERETkI+QA2RhTxRhTxo7OEBERERE5rdQA2RiTZIy53BjzlTHmXwArAWwxxqwwxjxtjAlYpo2IiIiIKNYEM4L8HYBjAdwPoL6INBGRowGcAWA+gCeNMf9nYx+JiIiIiKImmIVCuolIbtELRWQXgE8BfGqMKWd5z4iIiIiIHBBMgLzbGCN+LjcARESqi0iOxf0iIiIiInJEqQGyiFSLRkeIiIiIiNyAZd6IiIgobGnL0pA8PhlJY5OQPD4ZacvSnO4SUcSCSbHIZ4w5GUBXz9kfROR367tEREREsSBtWRqGTR+G7JxsAMD6rPUYNn0YAGBImyFOdo0oIkGPIBtjbgWQBuBoz+l9Y8zNdnWMiIiI3G3UnFH5wbFXdk42Rs0Z5VCPiKwRygjytQBOEZH/AMAY8ySAXwC8ZEfHiIiIyN0yszJDupwoVoSSg2wAHPE5f8RzGRERESWgpjWahnQ5UawIJUB+B8CvxpgxxpixAH4F8LY93SIiIiK3S+2WisrlKhe6rHK5ykjtlupQj4isEXSKhYg8Z4yZC+B0z0VXichSOzpFRERE7uediDdqzihkZmWiaY2mSO2Wygl6FPOMiL81QPzc0JhOAEYBSEZBYC0i0taeroWnU6dOsmjRIqe7QUREREQuZ4xZLCKdil4eyiS9NAB3A1gGIM+qjhEREcWTsWYsAGC0jHa4J0QUrlAC5O0i8oVtPSEiIopRxhSfsz7GjCl0PtgjtkTkvFAC5NHGmIkA5gA45L1QRD6zvFdEREQxxDf45QgyUewLJUC+BsCJAMqhIMVCADBAJiIiIqK4EUqA3FlETrCtJ0REREQxgkcK4lsoAfLPxphWIrLCtt4QERERuRRzzRNHKAHyqQCWGmPWQnOQDVxY5o2IiIjIDsw1TxyhBMi9bOsFERERxaS0ZWlcKITiTqkBsjEmBcB8EVkfhf4QERFRjEhbloZh04chOycbALA+az2GTR8GAAySKaYlBXGbKwEsNsb8zxhztTGmvt2dIiIiIvcbNWdUfnDslZ2TjVFzRjnUIyJrlDqCLCIjAMAYcyKA3gAmGWNqAPgOwNcAfhKRI7b2koiIiFwnMyszpMuJYkUwI8gAABFZKSLPi0gvAOcC+AHAxQB+tatzRERE5F5NazQN6XKiWBFMDvI+6IIgxa6CVrGobnmviIiIyPVSu6UWykEGgMrlKiO1W6qDvSKKXDApFtWi0REiIiKKLd6JeKxiQfEmlDJvRERERIUMaTOEATHFnZACZGNMLQAtAFT0XiYi86zuFBERERGRU4IOkI0x1wG4FUBjAEuhK+v9Ap2wR0REREQUF4KuYgENjjsDWC8i5wBoD2CPHZ0iIiIiInJKKAHyQRE5CADGmAoishLACfZ0i4iIiIjIGaHkIG80xtQEMA1AujFmNwAuP01ERAnFmLFB3W5MKbcTGV1qG2nL0lghgsgBQQfIIjLQ898xxpjvANQAMNOWXhERESW4tGVphWoMr89aj2HThwEAg2Qim4UySe9dALeKyB4R+d5T0eINAENt6x1RBDjyQkR2CmYE2J9gR6BHzRlVaAEOAMjOycaoOaP4XUZks1BSLNqKyB7vGRHZbYxpb32XiCLHkRciinWZWZkhXU5E1gllkl6SZ9QYAGCMqQ0uNEIuVdLICxFRLGhao2lIlxORdUIJkJ8F8Isx5lFjzKMAfgbwlD3dIooMR16IKNaldktF5XKVC11WuVxlpHZLdahHRIkj6ABZRCYDuBDANs/pQhF5z66OEUWCIy9EFOuGtBmCCf0moFmNZjAwaFajGSb0m8A0MaIoCGWSXkcRWQxghc9l54vIl7b0jCgCqd1SC+UgAxx5IaIoOXgQKF8eSArlIK1/Q9oMYUBM5IBQtt43jTGtvWeMMZcBeMj6LhFFjiMvRGQXwRgIxgDG+D9VqgSUKRPw+vz7E5FrhTLJ7mIAnxhjLgfQFcCVAHra0isiC3DkhYgo9rBEJ7lBKAuF/GOMGQxdSS8TQE8ROWBXx4iIiNzIeEZ//dZB/u03oEMH/X9GBtCqVfH7e+ogi10djGEs0UluUWqKhTFmmTHmD2PMHwA+AVAbQHMAv3ouIyIiIgDI9KmUM3Wqc/2IUSzRSW4RzAjy+bb3goiIKB54A+TjjtMAeRQDu1CwRCe5RTCT9DJFZH2gEwAYY4zN/SSiIKQtS0Py+GQkjU1C8vhkpC1Lc7pLRIklMxOoWBG49lpg8eLCI8pUKpboJLcIZgT5O2PMpwA+F5H8Ld0YUx7AGQCuAvAdgEm29JCIgsLcPSIXyMwEmjYFBg4E7r8fmDYNuOUWp3sVM9xUotObK16aMaXczm+uOrleMCPIvQAcAfChMWazMWaFMeYfAKsBXAZgvIhMsrGPRBQE5u4RuYA3QD7hBKBlSw2QKWgs0UluUeoIsogcBPAqgFeNMeUA1AVwQET22Nw3IgoBc/eIXCAzE+jVS/8/cCDw5JPAzp1AnTrO9iuGuK1EZ7gjwMGOQJM7hbTMj4jkiMgWBscUK8aasRibIF9SzN0jctjhw8CWLTqCDGiAfOQIMH26s/0iopBFvg4mkcsYY/JPYzz/fC+L1zmlqd1SUblc5UKXcXltoijatAkQKQiQO3YEmjRhuTeiGBTKSnpEMUGkoPy+d/R4dAJMkvAekuQKVETR4f8Q+hhgaCYw1HvdtcAGAAlyJIsoXjBAJoojbsvdIyIiikWlBsjGmAEAGovIK57zvwI4ynP1PSLyiY39IyIicpWAk7ZSU4EHH0QqRiEX5fTIVW4uUK8e0Ls38P770e0oEYUtmBzkewB84XO+AoDOAM4GMMKGPhEREcWezEzgqKOQi3IFl5UtC/TrB3z5JZCT41zfiCgkwQTI5UVkg8/5H0Vkp2fRkCo29YuIiCi2eGsgFzVwIJCVBcydG/Uu+cMVN4lKF0yAXMv3jIiM9Dl7FIiIiAjYsMF/gNyzJ1C5siuqWXhX3FyftR4CyV9xk0EyUWHBBMi/GmOuL3qhMeYGAAus7xIREVGMEQHWr/cfIFeqpIuHTJsG5OVFvWu+uOImUXCCqWJxO4BpxpjLASzxXNYRmot8gU39IiIiih1ZWcD+/Z4AeV/x6wcOBD77DFiwADj11Kh3z4srbhIFp9QRZBH5V0ROA/AogHUA1gIYC+BeAA/b2jsiIqJYkOkJMP2NIANA3746YS/ENAur84W54iZRcIJeSU9EvgXwI4BmACYBeBrA/9nTLSIiohhSWoBcqxZw9tkaIPssZlQSO/KFueImUXBKDZCNMccbY0YbY1YBeBPADgBni8gpAHbZ3UEiIiLXKy1ABjTNYvVq4M8/g2rSjnzhIW2GYEK/CWhWoxkMDJrVaIYJ/SZwgaFwiACHDzvdC7JJMDnIKwEsBHCxiCwrcl1wu8FERETxLDMTKF8eOProwLcZMAC46SYdRW7VqvQmbcoX5oqbwRGM0f+YMWHe3yvAwjLkasGkWFwIzTueZYx5zxjTzxhTrrQ7ERERJYzMTKBJEyCphJ/VRo2AU04JOg+Z+cJEzglmkt40ERkM4DgAMwEMA7DRGPMOgOo2988WY81YjDVjne4GxSB+dojIr0CLhBQ1cCCweHFBSkYJmC/sLIMxMBijqRT+Tt5qJE8/7ff6/PtTTAplkt5/IvKBiPQDcCKAXwD8YVvPLGaMyT+N8fzzvcwY43QXyaX42SGiUoUSIANaE7kUzBd2MRFgxQr9/wIuCRGPgslBLkZEdgOY4DnFBPGZNewdARwtzAui0vGzQ0Qlys0FNm0KLkA+/njNP546FbjlllJvznxhl9q4Edi7V0v3MUCOS0GPIFPJeOidiChBbd4M5OXh+kcfDe5I08CBwLx5wI4dzvWZIpORoX/79tUVFLdtc7Y/ZDkGyBHgoXciIvLmE7/59dcQkYCnfBdcoEtOf/mlM/2lyHkD5Guu0b8LFzrXF7IFA+QI+H7xeQPkgF+IREQUn4KpgeyrY0eteBHiqnqJxPVHZTMygPr1ge7dtXIJ0yziTlg5yEREROThDZCbNAnu9sboKPKbbwL//QdUqWJb12KJv6OuY/zUIHbF4FNGBnDSSfretW7NADkOOT6CbIx51BjzhzFmqTFmljGmoedyY4x50RizxnN9B6f7SkREVExmJlC7NlC1avD3GTgQOHgQ+Ppr+/oVY4I5KuuK4NhbweKkk/R8ly4aILuhb2QZxwNkAE+LSFsRaQfgSwAPey7vDaCF5zQMwGvOdI+IiKgEGzYEn17h1bUrUKcO0yxiUWYmsH9/4QB5927g77+d7RdZyvEAWUT2+pytgoLVGQcAmCxqPoCaxpgGUe8gERFRSYKtgeyrbFmgXz+dqHf4sD39Int4J+j5BsgA0yzijCtykI0xqQCuBJAF4BzPxY0AbPC52UbPZVv83H8YdJQZjRs3xq5du4J63GBvFwo72qTIWf2+uPl9fqnOSwCAm3fe7HBPiBJDzfXrcbhLF2SH+L1Qrnt3VJs0CXunT0fuOeeUfgcXs+t7xw3ftUX7UHHhQlQGsLthQ8iuXUCDBqhVqRIO/fADsnv1KvX+FBuiEiAbY2YDqO/nqlEi8rmIjAIwyhhzP4CRAEJahUFE8hct6dSpk9SuXTuo+wV7u1DY0SZFzur3xW3vs9/JLXXGFDrvitw9onizdy+QlYWKxx+PiqF+L1x4IVC5MqrPmQNcdJE9/bNRNL533PBdW6wPa9cCDRuiVvPmBZd16ICKf/zh9zPghudAoYtKioWIdBeR1n5Onxe5aRoA77fEJgC+U4Ibey4joiJYcpDIIRs8BzpDTbEAgEqVgF69dNnpvDxLuxUNCfu9461g4atLF2DJEiAnx5k+BeD6cnku5ngOsjGmhc/ZAQBWev7/BYArPdUsTgWQJSLF0iuIiIgcE2oN5KIGDgS2bGH+aqzIyytcwcKrSxetSrJ8uTP98sFFzKzheIAMYJwxZrkx5g8APQHc6rl8BoB/AKwB8CaAGx3qHxERkX+RBsh9++qEPVaziA3r1wPZ2f4DZMAVOzoJO7JvMccDZBG5yJNu0VZE+onIJs/lIiI3icixItJGRBY53VciIqJCMjM1wK2v02zSlqUheXwyksYmIXl8MtKWpZV8/1q1gHPO0QCZgYv7Fa1g4dW8uZbtc0GATNZwPECm6GEuEhGRxTIzgcaNgTJlkLYsDcOmD8P6rPUQCNZnrcew6cNKD5IHDgRWr9ZD9+Ru3gC5VavClxtTsGAIxQUGyHGOuUhERDbyqYE8as4oZOdkF7o6Oycbo+aMKrmNAQP0L9Ms3C8jQ3eIatQofl2XLnr9vn3R7xdZjgFynGMuEhGRjXwC5MysTP83CXB5voYNgVNP1WoWfvDon4v4q2Dh1aWLpsksWRLdPpEtGCATERGF48gRYONGoIlWJG1aw/9EvUCXF3LBBcDixfmT/nj0z4Xy8oA//wwcIHfurH+ZZhEXGCATERGFY+tWIDc3fwS5T4s+fm8W6PJCBg7Uv55RZB79cw9jxuqpzKMwB+6Fea56wWW+p6NfhcEYmHuyYTjiH/NcsdQ0Fec9nDZaQlpUkIhcitt0HCpS4m3G6hl+bxbo8kKOP14nfk2dCtxyi1U9tEywAd+YUm4n/Pxbiu+LfRggu4jfZTvNmELnOWpAFDu4Tce5IgFy2DnIXgMHAk88AezYAdSta0UPXcuqwA6wL7gr1u7jjwOjRuny4tWq+d/pfe454M479ehCvXq29IuigwGyi/j+UHK0iSj2cZuOc0WWmW5aoynWZ60vdrOgcpABDZBTU4Hp04FrrrGql5YKNxiNi5SDjAx9r6tVC3wbbx7ywoXA+edHp19I8PfFJgyQiYiIwpGZqeW+qlcHAKR2S8Ww6cMKlXqrXK4yUrulBtdehw4agE2d6toA2WqRjP5GPbgrqYKFV4cOQFKSTtSLYoBM1uMkPSIionD4lHgDgCFthmBCvwloVqMZDAya1WiGCf0mYEibIcG1Z4xWs5g1C9i/354+U3iOHAFWriw9QK5SBWjdmpUs4gBHkImILMDJMgmoSIAMaJAcdEDszwUXAC++CHzzDXDRRZH1j6zz99/AoUOlB8iA1kP+9FOticxyfDGLAXKQ+ONHRESFZGbqAh9W6toVqFNH0ywSPUB2U4DpXWI62AB54kQNqo87zt5+kW0YIBMRWYiTZRLEf/8BO3cWG0GOWNmyQL9+GiAfPgyUL29t+y4hGKP/KVLVJbQ2vKIw8OQNkFu2LP22Xbro3wULGCDHMAbIIeKPHxERFa1gYamBA4FJk4C5c4GePa1vn0KXkQEkJwNVq5Z+25NOAipV0gD58stt7xrZgwEyUYxhug+RCxSpgRwJ/9v0GOC8XwD8UnBJHG3TxjOCXKjPM2YAV1yhI+dvvgncdpvuIEye7L8Nz+sRlUriwVSw8CpbFujYkRP1YhyrWBAREYXKwgA54eXkAPfdB/TtCzRpAixeDAweDKSkAL/8Uvr97ZabC6xaFXyADGiaxZIl+twoJnEEOU6EksIRT6MQiYzpPvYKdWGPSHMqo5pPSZHLzNR6tw0bWtZkoW06LQ34v//TALGUiYAxvU1v2ABcdhnw00/ADTcAzz+v6QmABsjTpgHbtwNHHeVcH9es0VHtUAPk554Dli3T2sgUcxggE/mIheVPyT5cGpqClpkJNGqkh9Pt0KePtj11qvWVMtykfXstn/bBBxoo+0pJ0b/z5+vERaf4VLAI+jvCd6IeA+SYxAA5zsTUqkRELhPJ0tB+cyq97r0XeOop/f9LLwEjRxa/fzTzKSlyfmogW6pWLeCcczRAHjfOPeXOrOCbdtCoEfDxx8Dxxxe/XadOupPwyy/OB8jGAC1bBr+DnJwM1K2rS04PH25b13jkyj4MkIn84I4GWWbRIuCZZ4DrrgPmzAFmz/YbIFOMycwEOne29zEGDgRuvBFYsSK0w/tutnGj5hejh56fP78gpaKoSpWAdu2cz0POyACaNwcqVw7+Psbo54MT9WIWJ+kREdklJwe49lqgfn3g6aeB7t2B777TST8UsrRlaUgen4yksUlIHp+MtGVpznQkL09zZ+2eoDdggP6dOtXex4mmdu2A338vOB8oOPZKSdEg08ltJpQKFr66dNH77ttnfZ88DMbo0SuR4qfduwvqaP/0k9/b5N+fimGATERkl6eeAv74A3jtNaBmTQ2Q9+7VUWUKSdqyNAybPgzrs9ZDIFiftR7Dpg9zJkj+91+dtGV3gNywoeYfx3qA7BvcNmoU2uc/JQXIztbtyAk5OcBff4UfIItoNQsnfPGFfk4BLaFHIWGATEQlcs2oXaxZsQJ45BHg0kuB/v31snPP1UOv6enO9i0GjZozCtk52YUuy87Jxqg5o6LfmWiWeBs4UAMs72PGmo0bNZfaa/584IQTgr+/d6KeU2kWq1drkBxOgOxNwXEqzWLKFKBZM+D00xkgh4EBMhEF5KpRu1hy5IjmHFetCrz4YsHldevqrP3Zs53rW4zKzPIfIAa63FZ2rqJX1MCB+nfaNPsfy2pff62f999+K7istJSKopo1Axo0cC5A9qlgEbKjjtLcZScC5F27gFmzgEsu0frSv/0GbNkS/X7EMAbIRBSQq0btYskrr+gP+gsvAEcfXfi67t31uv37nelbjGpaw38wGuhyW1k8giwYo9UIjCl+8lZ3uPVW/9cbU3B/t8jNBR54AOjdW4PbxYvDb8sYZxcMycjQetcnnhje/bt0cSZAnjpV34dLL9WSgYDusFDQWMXCIVwumGKBq0btYsW6dcD99+uP0pAhxa/v0UNzk+fNK/jholKldkvFsOnDCu2wVS5XGandUqPfmcxMPTpQs2b0H9vtNm3SKhU//ghcf73uJIY6alxUSgrw2Wea+110h9NuGRnAMceE/xy6dNFUh61bdbJutEyZAhx7bEEN5oYNNc3immui14cYxxFkIgrIVaN2sWLYMB1xev11/7VrTz8dqFCBaRYhGtJmCCb0m4BmNZrBwKBZjWaY0G8ChrTxsxNiN28NZItqE5dYiUBEU3a8pQGvvVZHBt1YieDrr7VKxW+/Ae+/D0yYEHlwDDibhxxuBQsv74IhCxda059gbN8OfPutjh57jzT07q1zH7j0ddA4guwwLhdMbuaqUbtYkZ4OvPoq0KSJ/+srVQLOOIMBchiGtBniTEBclN2LhBSVlKS57DVrAo89ppVQ3n+/oIRXFIS8IMX//Z+e8u/vFcZvXseOQLlyGiB7S99Fw+HDOknPmwcejvbtgTJlNM0iWoudfPqp7lRdemnBZX36AG+9pa/hmWdGpx8xjgEyEQXkDUZGzRmFzKxMNK3RFKndUt0RpLhV167ADTeUfJsePYD77ov+YVeyRmZm9JcPNgZ49FENku+6S2vrfvppaItXxKqKFTXQ/Pnn6D7uX3/paH0kI8hVqgCtW9ueh1x80GwMcPJUAFMLX3bWdwC+s7Uv8YIBMhGVyDWjdrFi4kQd8StJ9+76d84c/3nK5F4HDmgubDRHkH3deacGycOGAeedB3z5ZVQe1u9S6itWABdcAKxdqyPcw4cHTDsJtJR68EdDPfn60Tx6GkkFC19duuhy2iLxtWR4nGOATEQUqU8/Lfi/t+pASdq1A2rX1jQLBsixZeNG/etUgAxoHnL16vrZOeccAFFMO/CaOhW48kodIf3uO00bijfeChah1G32p0sX4M03gTVrgBYtrOmbR7E0zZdfBm6+WfveqhXGenYoRstoXc3znnu0TGHjxpb2Ix4xQA5SyPlXxe7vxaoTRHFl1y7gppsAjAj+PmXKAN26ab4yR5ViSzQXCSnJoEFAtWrAhRciqgFyXh4wZoyme3TpojuHYQRbpc2/KRTYAQVLe7/4ogaA0ZCRARx3nKZ4RMK7YMjChZYHyMVMmaIpHa1aFb+uTx8NkGfO1AojVCJWsSAiisQddwA7d4Z+v+7dtSTWqlXW94ns45YAGQB69dLFILz++sv+xxwwQIPja64Bvv8+eiORTZroMtXRrGQRaQULr5NO0sm5QeQhjzVj83cOQrZxo5bX852c56tVK30duapeUOJyBNmqGsNAwV6u3/wrQNeIb9NGR4T69weee05rJr73XkFpGgTOv6LIsJ40Oeqbb4B33wVGjQJCLezhzUOePTv8RQgo+jIzdcS/USOne6LOOAPAHP1/1676mWzXzr7H+/prPYx/443RP/IRzQVDDh3SlIhBgyJvq2xZrcQRIEA2fl7HMUWOVosEET18/LH+DRQgG6OjyGlpWqEjilVQYhFHkCP16KPAP/8Ab7wBPPOM5mLl5uqX1qhR+iEkslCJq24FcXLdqluxat8+nSh14onAgw+Gfv9jjtFTerr1fSP7ZGZq5RE3BhcVKgBnnw389JO17X7+ecH/58zRlCIn0oJSUnQhnq1b7X+sVau0VJoVI8iApqMsWeK3DrGI5J/GeP75XhZUcAxoekX79iWncfTpo6t4/vhjmE8kccTlCLJXJKOCQY1MLlumQfHVV3smSgA46yzgjz+A224DHn9cc33eey/sflBwrKonHWmuubbhxVHpuDZqlOZF/vBD+DmK3bsDH36oO9UUG6JdAzkUP/6on6mePXUSXc+ekbWXlwc88ggwdizg/W50soau74IhkdQmDoZVFSy8unTRI8zLltlTInDdOuDXX4Fx40q+3bnn6s7djBn6fwoorgNkW+Xl6ehRzZoaJPuqXh14+23N1br+ej20gvud6CXFoYDpPgCwezdQt65O/GrQQIvcF6mTynQfC/z0kx5mHjlSV8YLV/fuutpYNFfZoshkZgInn2xL0xEvANW0qe6wnXcecP75wAcfABdf7PemxSbBFZWVpVUqvvgCuOoq4N3IumaJDh00uItWgFymTHBVaYLhXVFvwQJ7AmRvesUll5R8u6pVdSdnxozisQsVwhSLcL3+OjB/vu4R1qnj/zYDBgDLl+uXldf69dHpH4WlxCVfr7tOS/6ULau1SAMsC+vosq/ffac7b6mpwObNOuObrHXwoJbZatpUjxJF4txz9VB1GKvqpS1LQ/L4ZCSNTULy+GSkLUuLrC9UOhF3jyADQL16wNy5Wjnh0kt1sMbDGJN/8h7K970sPxd25UrglFOAr77S75B33nHmuRRVoYIGl9FYMCQjQ1MVKlSwpr3kZB28sGvBkClTNAhv3rz02/bpA/z5p446U0AcQQ7H5s3A/fdrmSafpTT9OvpoYNo0IOkRPd+mDYOWWJSergtA3HMPsGiRe/NGZ8/WEYK77tJRlnHj9ChGoJ04Ct2jj2p+4jff6GsdiTp19Ac/PR1At6DvlrYsrdAS4Ouz1mPY9GEAwEVd7LRjh+4gWRwgh1zyrDQ1a2p1iwsv1J25rCzg9tsL5bIGbHP6dK2vXLGi5hufdVahqyMe5Y5USoou5W73JLOMDKBtW+vaM0YDWDsC5DVrgMWLgx8R7tNHq+/MnAmMCKE8ZYLhCHI4brlFN87XXw9uooLvbdq31/I4FDv27dPR4xNP1Fy8nj01z3zLFqd7Vlx6uk7SKVcOeOIJ7Xuko5xUYOlS4Mkndd5BgPxOY8aGdlrcD+aH4INjQJf+9gbHXtk52Rg1Z1SYT4yCsmGD/nXzCLJXlSqaHnHRRRoMjR6tI+CBePON+/fXtIJFi4oFx65w2mlaYWLpUvse4+BB4O+/rcs/9urSRVcf3LfP2nY/+kj/lpZe4XX88TrSzHJvJeIIcqimT9fC6KmpWkA8VN9+Czz/PHD3f3r+iy/0CylCnFxmI+/KQz/9pKMqPXoA992no7VXXOF07wqsW6cjCSNH6vmTTtJAzruyUnKyg52LA7m5wNChepj02Wcd7UpmVmZIl5NF3FQDuQSFR3nb6OkRaABcRPESmGOAxQCaaVqFd3Tb8lHucPlO1PPm9Vpt5UrdYbAjQBbR0d6zz7au3SlTdMehSZPgbu8t9/bOO7ozEOlCKHGKAXKobrpJN5q77grv/mXK6H3v9nwpDRigP7rPP6+T+8hdvv1WjxTccUfBF3O7dhokzZrlrgDZm/bRo0fBZWPH6kSdhx8GJk92pl9FpC1Lw6g5o5CZlYmmNZoitVuqI2kB4dXQ9qxYVuel/EsiDiAOHgRq1QKGD9fvgSA0rdEU67OKz2doWsPdgVvMi5EAOa41aqSB4C+/ALfeas9jWF3Bwsu7ot6CBdYFyCtX6hHNF14I7X59+gCvvALMmxd5tZM4xRSLUG3YoLPOrcp9uv9+YNIknRX9ww/htbFpU8HEsGOOKbi8Th3NQXvpJZ0s2Lu3jnq7cXKZG+3fr6kVxx2neadeSUkahHqXCXaL2bOBhg2Bli0LLmvcWH9E3n8f+P135/rm4c2dXZ+1HgLJz51N6AlmFStq3fQQJuqldktF5XKFq5NULlcZqd1CXa2EQpKZqSuixUhOv8joglPew5BHkrQO+gVLIQfuhUzvCKn+HKTuy5Bvzyx0e1eze8GQjAydjG31stB162pqg5V5yFOm6IhwgGolAZ19tk5AZJpFQBxBDtXw4XoowyqPPw707avldM46S0eXH3205JmzvkXSjz9eS3l5A9s2bTRH+pxzdD32JJ99oL599fD7X39ZV7omnj3wgKYtfP99sVJp6NlT69cuW2btRI5w5eXphJrzzy+eF3/ffbpTd999OinDQSXlzjo1uazUYCAvT7fN5ct15nf9+gAsnqzUvbu+P1u35rdfEu9r5YaR+ITirWDhxCIZISg15W7aNA30fRWpievqlLuUFM273bxZBwWslpGhv5F2TALs0sXa4P6jj7RsW6ivQ+XKGifMnAmMH29df+IIA+Rg+Bbxf+IJ69s//XQd3bvzTuDpp/UD+/77BbU2t2/Xsj1z52oZrz//RH5AfMIJwA03AHft1/PTpgV+nD599O+MGQyQS6HBTx0Ao4EzvwXwrZ9bjQFOngpgajS75t9vvwE7dxYsX+yrZk1d1OKuuzRlxEExmTv7+uu6AMM77wQVvIbFN6+9tMo4HkPaDGFAHG1uL/EW44JZchkAZP58/c8vv+gkRKtlZNhTqxjQAHnKlKB3hku0fLlO+nv11fDu36ePDqitWRPenKo4xxSLYLxUkG+ImjUtabLYcsHVqukoH6Af+nbtCq47+midnfrqq57g2Of+06drYB2M5s318PtXX1nyHMhFvPnH/gJkQHPnmzbVCYcOCpQj69rc2cxM4N57NYC96ir7HqddO6B27bDqIVMUxUiAXGI9d+9p794Sr3ci5a7o8sqBTmjfXo+y2lEPOTsb+Ocf6/OPvbwTC61YHGjKFD1KfOGF4d2/d2/9G+KRxbFmbP6cinjGALk0mZnAQw853Qvr9O2rKQP79zvdE1cSGQ25PUt3QL47q3AOn4zGGOjYvchoyG17IBWegGTfU+x2Uc/hS0/X9JpAIxIVK2rqzuLF0e1XETGVOyuiKVUiuvNq52H1pCStqz57trvy2qnAoUNa2jEGAuSgVKvmdA/CV768rlBrRx7yypW6DdoVILdvr5P1I81DFtEA+ZxzdHGYcBx3nOZZl5KHXHQxmRIXmYkjTLEozU032fKDVeJywcHcP8BywaXnRVYFMAqo5myZKtf6+WfNxxoxovRZxj176m1//LFw5Yhoy87WPnjLuwUyZIiWJ/sjOt3y24VYyp1NS9ORlRdeiE6JvB49dLnYlSsLT7Qkd9i0Sf/GS4Ac61JS9OjuoUPWrXYH2FfBwqtKFZ0fFGmAvHSpzj+6++7I2unTB3jjDf0dKTrXxkOKxEBRK+nnMI4gl+bLL/3WjqQ4dOCALuLStKkuBlGaM8/UkYxZs+zvW0l+/FEXriktSC9TRlfWc9iQNkOw7rZ1yBudh3W3rXNucl7RNKeiJ28Jv1tv9Xt9/v2t4k2PYZqFO7HEm7ucdpp+7/32m7XtZmToQkt25uR6V9SLZPBtyhSttBFueoVXnz5aanLu3MjaiUMcQS5N+/b6A3mXHgJ2fJnNAIIZic7f67t4uY6Ubtzo+tnYUTV6tFb4SE8P7vBjlSpanmvWLJ1cGWWFP4tjgN6/Avg1+Ab27mXtbTdp3lzLNM6erQu7kLswQHYX3wVDTj3VunYzMnTye7ly1rVZVJcuwJtv6uS4cErJedMrunePvOTgmWfqyPGMGQUT+QkAR5BLN2GC7qXFkz59tDyOC+riusavv2r6wfXXB57o5k+PHu5ddro0Dq8G57QSJzJdfLHWLD18OLqTmHr00Eo1vpVzyB28AXLjxs72g1SDBkCzZtbnIWdk2Jde4eWdqBdumsWiRVqC9NJL/V4dUr5wxYpa4m/mTM5/KCLOIj+L+G5wnToBcNEym1bwzlydMUNnz5OuZtiwYegjwT176mIvUVx2utBn8d9/dYJGaqrWbUaQn8VLLwWe/Upzre0qXRardu/WJeCHD7d3FMmf7t01H3DBAmvrrVPkMjO1ohCX5c0XTFm2ovmrlkpJ0RQzq/z3H7B2raba2alVKx21XbBA54aEasoU/W664AK/V4f8mvfpo+mkf/2lo+cEgCPIxeXkAMOGOd0Le9WvrzOAWe6twIoVesirRo3Q7udddtpbZi3a5szRv6FOEkxN1cktzK8v7qOPdOTYzrJugZxzjqY9MQ/ZfWKkxFs0BVWSzU4pKZoquGGDNe15yqjaPoJctqz+BoczgpyXp99R551nWdnZQoNmlI8BclHPPqt1iONd377A/Pm6uATpiEGvXqHfz7vs9KxZzhyeSk8HatUKvaj9ccfpAjMTJuioARV49139gWzfPvqPXaeOvpcMkN2HAbL7+OYhW8HuCha+unTRCYaHD4d2v/nzdYcgQHpFWJKTtXIOA+RCGCD7+vtvYOzYyGeFxoK+fXVP9JtvnO6Jc3y/mJ57Lvx2evQAtm3TZaejSUQD5HPP1QoVoXr4YV1udtSoUm/q9sLwlvVv9Wr9sb3ySucmsPbooX3Yty+qD5u2LA3J45ORNDYJyeOTkbYsLaqP72oiMRkgGzM27FNMOPlkTXmxMkAuXx449lhr2itJ5856FC/U340pU7SsXf/+pd40pG26Tx9g3jyukeCDAbKXiOZjlisHvPii072xX6dOwFFHJXaaRarP4hSRHKrypjdEu9zbqlV6eDHcGsxHH63LT3/yiU5SLMLtheGD6V/IfXzvPT0qEORyz7bo3l0n6c2bF7WHTFuWhmHTh2F91noIBOuz1mPY9GEMkr327NH81BgLkONe+fL6W2ZlgHziidGZmB/ORL0jR7RWep8+pVYgCnmb7tNHB42+/Tb4/sQ5TtLz+uADHY17+WWgUSOne2O/pCTNO/ryS93owhmBjGVLlwKPPw7gwcjbatxYJ12kp2vAGS3ew/CRLFJy5526hPk992gdTJ+A0jd/0I2TUC3vX14eMHmyBqgNG0bavfCdfrqOis2erUd6omDUnFHIzskudFl2TjZGzRnlzkVcoi3GSryFVPbTRdt0WE47DXj+ea3lG+kEyoyM6E2OTU7W+SsLF+rgXDB+/FErJgWRXhHyNn3GGUDVqppmEcTodCLgCDIA7NoF3H47cMopOnM9jpQ0ynbp5Mn63P2MHsa1nBzNOY60fqSvnj11xO/AAevaLE16utbNPeaY8NuoWlXrP8+bx/yzH34A1q/X9AqLhDUKX7Ei0LVrVCd+ZmZlhnR5womxADmhpKTod/qSJZG1s3+/bv/RyD8GdDDCu2BIsKZM0eoX559f6k1D3qbLl9fBAZZ7y8cRZECXaty1S0ds4mwktcRZxHv26B7sV18lVkmpceN0BHnqVGCgRbWgo73sdE6O1su97LLI27r+eh2Bue8+nagYZ9tA0CZP1h2GgQMtazLsWfzduwP33qujRQ0aWNafQJrWaIr1Wev9Xk5wJEB2vIRarPCdqBfJ79iKFfrX5gC5cH53Fz35yfke4zcPvB6Ae4Cqz5R6lCCsbbpPH2DaNH0torWj4GIcQf7+e+Dtt/VQc9u2TvcmumrW1MO5iTRyuGwZ8OijwODBAWtIFhXUKGC0l51esEAncVkRjJcrp+kmy5drDq7NXDkZLDtbc/sGDdIRGqd5F6vxlvGzWWq3VFQuV/h5Vy5XGandUgPcI8FkZurEqKOOitpDOl5CLVbUq6erUEaahxzNChZRENY2zXJvhSR2gHzokJa6at5cDzMnoj59dDR10yane2K/3FxNrahZE3jppaDvFtQPVZUqurMRrQB59mw9RHfuuQAsmFB38cV6uO+hh2xNE3HtZLBp03SHw8L0ioi0a6cpQFFKsxjSZggm9JuAZjWawcCgWY1mmNBvAvOPvTIzgSZNdO4GuU9KigbIkew0ZGRoelMkKWshEBkN2X4TBGMgT1bS8yWdrt8EqfpM0O2HtU03bgy0acMA2SOxt/Zx47QSwGuvuWPUyAneSUCJsEE8/TSweLFOSqtb1/r2e/bUZae3brW+7aLS03X2du3aACwYbTIGePJJrYrx8su2dbukiSOOmjxZl60980xn++GVlAR066Y7QlEaKRzSZgjW3bYOeaPzsO62dQyOfTlY4s2VR1zcJiUF2Ly5IBUmHN4KFtFMMatbVwPy0vKQc3KATz8NefJcWNt0nz6aKrh3b0iP5SZWlf1M3AB55Uo9rHzZZboiTaI66ST94o/3AHnFCmDMGB0pvfhiex6jZ0/9a/ciD3v3arF472F4q5x9tn45Pv645uTbwJWTwTZv1h2OK65w1whh9+7at5Urne4JORQgu/aIi81C3imwYsGQjAxn0iuCmag3Z45+J1u5OEggvXvr0dYYW6zIjrKkLvo1iCIRrVZRubJOTkpkxmhQlJ6uKSfx6MgRYOhQoFo14JVX7Hsc77LTdqdZzJ2rz8mOyYBPPAFkZenRFRsEmiDi6GSwtDQt8XbFFc71wR/v+1tCmoXbF3CJCzk5uqPiQIDs2iMuNgprp6BtW130KNwAee9eXZ3OqQB5wwadkBvIlClAjRrRGcw77TStsRxjg2a+R0u9AXKkOftxGSALxkAwRoM/f6ekJJ2ct2cPUL++39vkt5EI+vbVIvg//OB0T+zx/PNayu6ll3RxDLskJemoX3q6vYfF09N1586OyiNt22oe7osvRna4MgBXTgZ7910dgTr+eOf64E9ysq7oVWQkx+0LuMSdzZt1B8qBANnqIy6x8NkJa6egXDkNNMMNkKNUwcIv74IhCxf6v/7QIa24dMEFOlHUbuXK6dHQKJZ7c+uOPsu8OcwVS3qec45ueF99Zf1h+xBZXrx+1SrgwQf1y2XwYGvaLEnPnsD//qcVIdq0secxZs/WXFmLviyLfwabA7gfaPZOsdv6Lz1UoLTSQ94cuFFzRiEzKxNNazRFardUZ/NdMzJ0HoIbde+uixjl5OgPF9y/gEvccbAGstXl92Kh8kXYOwUpKcAzz+gk40qVQntQJytYtG+vec8LFvjPMU5P16N60Uiv8OrTR1dY/eMPXc7bBrFQxjAuA2TjGfkNZjWhgG14fnjc/3VigSpVNEj+6quop5wEGrEIdkPJH+Uvcvtipk3zm19a0KpFAYbvstN2BMgbN2pO6vXXW992lAxpM8RVE8AMxgAjtgEjXLCzWlSPHsAbb+joUiLVKo+StGVppe+seQPkJk2i3r/UbqkYNn1YoRFVx4+42CzsnYKUFM2dXbxYV4ULRUaGBtXNm4d2PytUrgy0bh04D3nKFKBWLZ20Gy29eunfGTNsC5BjYUc/LgPkWFBa8B71D0zfvsDNNwOrVwMtWkTnMVE88HXrhhI077LTs2ZpbW2refNRbRjpL/SZ3LVLD++fdpruOJXCFUdC4tE552jaV3o6A2QPq74jvLmu3uDTm+sKoHCQ7GCA7MojLjYLe6fg1FP17y+/hBcgt2zp3CTdLl20DruIbu9eBw8Cn38OXHKJ1tmPlgYNdGR75kzg/vuj97guwwCZVJ8+GiDPmAHceqvTvQlawKMFhw7pF17VqsBvvwUs3WPLkQLvqF84h/pKk56uhfHtSt/wql1bvxjvvVcnBZ59tr2P5wD5ooMe0vziC6Bfv2LXu2JnrXZtoGNHTatJ1FrtsOdwbEm5rsUC5Dp19EibA9x2xMVuYe8UHH207tSHk4eckZFfU94RXboAb74JrFlTeIBq5kytzx7N9AqvPn10svbu3TqCnYDicpIeheGYY7QGZBCjhTHhpZeAtWuBZ5+N/tLJPXvqnv+PP1rbbl6eBkrduxceZbDLzTfriPi990ZtskZUTZ6sK6N5Dye6VffuWtZv3z6ne+IYO2aoB53r6mAN5EQVdk3ucBYM2bNHF8pycgU970S9omkWU6bod9Q550S/T717a7WkKC1W5EYMkCMQCzOCQ9Knj1b32L/f6Z5EZscO4LHH9PnYUQqtNGedpROqrP5iWbYM2L49es+pUiXgkUf0S/vTT6PzmNGye7eOHF9+ef7kN9fq0UNzK7//3umexJWgSw5u2MAAOVakpOhCTevWBX8fJytYeLVqpbnIvgHyf/8B06cDF10ElHXgYP8pp+jIcYyVe7MSA+QIRLx6mdv07QscPqxFyWPZ2LEa5D/9tDOPX6WK5sBZXQ/ZxvzjgK68Un84HnhAKynEiylT9LNeZGlpV+70nnaaLoEbY4X73S7okoMcQY4d4SwY4mQFC6+yZTWVyjdA/uorIDvbmfQKb5/OOw/4+ms9epmAGCBTgTPO0MU0YnmPceVKLdk1bJjulTulZ0/g99+tXXY6PV3zqhs1sq5NlFI3vGxZ/QFZvVoniQSoLR5zdcMnT9YfxPbtC13syp3eihWBrl0ZIFtsSJshmNBvAprVaAYDg2Y1mmFCvwmFD+dnZemJAXJsaNNGBygCBMh+6+1mZOjobbNmUehgCbp00fkyhw/r+Y8+0nUaunZ1rk+9ewPbtmm/EhADZCpQvrwezp0xI3ZzTu+5R78gx4xxth/eNAirgpqDB4F585xJGYk3q1frD+hVV0Unl9sKPXroD/nmzU73JK6Umuu6YYP+ZYAcG8qWLbZgSGlHhdJfeEEHU5xeZr5LF51cvmyZzjf46ivg4oujP4fGl2+5twTEKhZUWN++wGef2Vog3DZz5mjO1rhx9q6YF4z27XXme3o68H//F3l7P/+sQbINAXJQdcN379altMuV09GEatUKtxFLdcMnT9YfwyExVBnAm1YzZ477lsSOZw4uEkJhSkkBnnpK0xMqVy693m7Dhs6mV3j5TtRbtUq/7x1IryhesnMM8HAe8HDxUp6RLhzldhxBpsJ699a/sbbHeOSI1h1u1swdZeqSkjSYnTXLmtH49HQdHTnrrMjbCketWkBamlYGGTnSmT5YIS8PeO89DTgbNnS6N8E7+WSgbl2mWUQbA+TY410wZNGi0m+7ezewZYs7AuRmzbRixYIFOkeiUSPWPncYR5CpsAYNgA4d9PBOLBUInzxZc37/9z/N2XQDK5edTk/XQvhFRm6j6owzgIce0kmQ552nFSBizQ8/AOvXA48/7nRPQpOUpCtppacXX0yA7JOZqUdN6td3uicULN8FQ848s+TbumGCnpcxOor83XcatN90k6NpH/mjv7/+qq9pWlrQ3/nxsnAUR5CpuL599ctl166AN0lblobk8clIGpuE5PHJSFuWFsUO+jFqlG7El1zibD98+S47HYmdO4ElS9yRf/zggzqqMWKEjibHmnff1cVjLrjA6Z6Ernt3/eH880/bHsLvJKZElpmptcCdzk+loBgzFuaoV2AwBua+g3re5zQGwBjv7cxYmK5z9LZ9Fxa6nWO6dNEd+MOHnateUVSnTnr0KtaOKlvANSPIxpg7ATwD4CgR2WG0ntILAPoAyAZwtYgscbKPCaNPH+DRR4FvvgEuu6zY1UEv0RpNW7ZorV43jaw1bqxVJyJddvrbb3XU0A0BctmyOpJw8smawztvXlg1Oh1ZpS47W5dzHTRIZ63HGm8e8uzZllZosWOVOl+uWJEwXCzxRtHUubP+TU4uyEl2WpkyOlnv6681ldHJSYMewe7ElJYjDZScJ+2KANkY0wRATwC+Sxj1BtDCczoFwGuev2S3zp11j/Grr/wGyEEv0RpNl15aUAPTTXr21GWnDx4MP/UjPR2oXr3gy9Npycn6nC67THekxgb3ZWV3IFaqadO0PvZVV9n3GHZKTgaOO04/D7fcYlmzpU5iClGgWtFRfa+tkplZ+mF6ch15rZ4e5VqzRpefDqRbN/1O+PVXANFJDcgvh1lkeyhk3bqARy0Ktpoo7nD27g28/77mdZ+SOGGYKwJkAM8DuAfA5z6XDQAwWfRbdL4xpqYxpoGIbHGkh4mkTBndIGbM8LvHGPQSrdE0bpxzj12Snj2BF17QZafDWeBDRAOic85xZjWlQAYP1iMMjz0W9POyOhAL2bvv6kQYJ+uKRqp7d/2hyslx7QqARQPfmB1BPnIE2LiRI8ixyHfBkJIC5IwMPWJKJTvvPD06O2OGqwLkSKpkBLMz5PgvrjFmAIBNIvJ7kZGHRgA2+Jzf6LmsWIBsjBkGYBgANG7c2OfyyPcGd5WQhxsNTj1++TPPRNX33sPe2bORW2TkslG1Rti4b2Ox+zSq1siy/gbTTpnffy+4ffXqJeZMW/F4YWnTBrXKlcPBL77AgQ4dQr570j//oOa6dfhvxAgcsvmzEPJrMGYMasyb5znKcH1YbVj9ugdqz2zejJqzZ+Pg7bfjwJ49lj6mnerUeanIJfUB3AWULzzJsLRDiTt33hzS49qxPUTrvbaK2bQJtY4cwX916ti+7ZG1djVsiFpVquDQd98hO0AAbHbtQq1t25DdvDkOFnl/7fxs1fGMIIe6Tebf3/OdsDOavwfGoFqnTjDTp2NvCFWi7P49sOJ9KqmNqATIxpjZ0G/2okYBeACaXhE2EZkAYAIAdOrUSTYWj93CVrt2besai6XHv+gi4IYbUP2HH3Tv0ce4HuMK5SADukTruB7jLOtvqe2IAI88AuDs4G4f6eOF3zBw+umoNG8eKoXzGB99BACocsEFqGLzZyHk16B2ba3S4VOKKNQ2gr190DlnxQJKXw8DzwLyjLPbtBPsel+cbNP278aVKwEAVU480fZtj6xV+6ijgFNPRcXffkPFQO/d8uUAgMqdO6NykdtE43fXtb9Zgdrv3x946CHUzskB6tULqQ1rvr+Ljxhb8RqU1EZUAmQR8XsM1hjTBkBzAN7R48YAlhhjugDYBKCJz80bey4L4vFKHnaP2UN+0VSrlgY+M2boYXQf3jzjUXNGITMrE01rNEVqt9To5h9/8QUwdy68AbKr9ewJPPCALtkZ5BdLvvR0PcTbooU9fYtU5876+bjvoNM9iWuFvtO6dNFVL3/8sdT7xUu5JUewBnJsS0kBnngC+O8/XV21KDeVeIsFvXtrmc9vvgGuvNLp3kSFoykWIrIMQP6SZ8aYdQA6eapYfAFgpDHmf9DJeVnMP46yvn21FvLmzcUWVRjSZohzE/IOHwbuvlsrRNhX8co63gB59uzQVm87ckQrWFx0kbuqcxR1993AfY/q/1etAk44wbaHCivnbMkSoGPH/BUDY1737rpS2N69OnmT7OENkJs0Kfl25E4pKfodunAhcPbZxa/PyNDtxyctk0rQvr0O8MycGXaAHG7OsFM7+m4u7jgDwD8A1gB4E8CNznYnAfXtq39nznS2H0W99hqwejXwzDNO9yQ43mWnQ62HvGgRsGdPeJP7osl3tvXllwOHDjnXF38mT9YR13jRvbv+8M+b53RP4ltmJlCzJndCYpXvgiH+ZGRouUQ3Dz64SVKSjiJ/842uVJgAHJ+k50tEkn3+LwBucq43hNatde/6q6+Aa691ujdq1y4tK9ajh2dZ7IVO96h0RZedDvYLOT1d/3brZl/ffFiyl75kiS4m8vTTkbdlhZwc4IMPNH/uE6c7Y5HTTgMqVdLPx/nnO92b+LVhA9MrYlnt2no06+ef/V+fkaHfCxS83r2BSZO0LN7ppzvWjaBK5ZXahlfgUW03jyCT04zRUeT0dPeMCj72mI6qPvNMbO359+gBbN2aPzEkKLNn6+jzUUfZ1y+rjRih7403uHfa118D27fHV85cxYpaqm72bKd7Et+4SEjsS0kB5s/XgQlf27frifnHoenRQ8u+Jsiqeq4aQSYX6ttXF4X48ceojWQGtGYN8PLLOprdtq2zfQmVdxW89HSgTZvSb79/v4583H67vf1CcHlhQU9szc4Gvv9eA9I//nA+uJ88WfvQqxeAOFqIs3t34J57/M4PIItkZhaq0EIxKCVFRzzXrCk80ZkT9MLjnbw/cyaQmupMH/bvz59PIif+L7/aDBo10vk+PXtqrFLKb4/3iGlJyxUxQKaSnXsuUKGCplk4HSDfe6/mkj76qLP9CEeTJgXLTt9xR+m3nzdP0wPcnn9cVOXKwIcfaqWFoUO12ohTI/27d+vjjxjh2kU1wubd4Zo9O75Gx91i/35N5+IIcmzz7uD88ovrAmS3VpgJOn2hhO91S1f7y8sr+P855wA//QStEAxdXXTYMC1F27Kl5b81TLGgklWpojOAnT6kMm8e8NlnwH33AfX9ldSOAT176ujqwSBKoqWn647JGWfY3y+rtW2rOchffgm88opz/ZgyRSuexGMA2batLgfPNAt7bPCsUcUAOba1aqWTLItO1MvIAGrU4NEXu335JeCzoFfQNm3Skf/LLy9cGnX37sJHVWfO1PM2TbbkCDKVrk8f4NZbgb//LnnZTrvk5emoa+PGAUdf3bo3XkiPHsEvOz17tuaZVqoUnb5ZzNyyC8AY4OadwM2B35vSVoCLZClRTJ6sE03btw+/DbdKStIjOrNnhzbxMwYEvaiAnZ8d1kCOD0lJujSyvwD5pJMc2W7cvk5DfvpCSY+/ezewdq3uSPo5mfXXaBv9+nnuoG3ixBP1aKq/04YNeoR11qyCuTr16unEwPc8zSxdqn+fis7vPQNkKl3fvhogf/UVcMstYTcTShBb/MfPs6FV0eoIEf34OeWss/RQf3p6oQC52Bfili36BXHFFU70Mj6sXq0/ik89FVfBYyE9eugo+YoVzKW0GgPk+JGSopO79+0DqlXTHcqMDODCC53uWeyqVUtPHTr4v977+z1/PrBhA2TQID2/ClorP1jbtgHvvRcwZcPugTEGyFS6Y4/VcjkzZkQUINvB7XvjhVStqqVxZs2CeeqpYleP8eR8/R88O8zePNMYJt+kaH7YTTfpBMsgRfzFN3myjh6FsjCLCwWVD9i6dQn393LB5z9Eji4qkJmps/UbNIi8LXJWSooehVy4UOfU/PsvsHMndyqj4ZRT9BSjGCBTcPr0AV59NfCynSEI6Yfvscd0ect584CuXWMjlaIknlX1ZOvW/NyqYkH8lVdqbtXJJzvVSwCA8TPyOqZIoCZFyycV1bMncOedwLPPaqCcf8jNRnl5wHvv6Q4GcwxtFdlRocKcOirkdyc6M1NnxZflT2TM8wZov/yiAbILJuglmqDSNkq6f5GKE9EaGOMkPQpO375aC3nOnOg95tatwLhxeiisa9foPa6devbUv4EmV4nodd26FV6hzgEiUuopKKmpmgd8zTValsxuP/wArF8fF5PzDMboj4tI4NNLL+mNe/bUHVif6/LvT4UYY/JPYzz/fC/7bvJkplfEi1q1tMKBd8EQBsgUJO4eU3C6dtUUgRkz8lcfsj194aGHtArBk0/a074TfJed9nf4f8UKzUGOg/SKfBUqaOm3Dh00aJ01y97g/913Ndfwggvseww3GTlSj+pcd53We/7yy4DLI9s1AS6S0V8njgr57tz5/R479lgGyPEkJQWYNq0g/7hWrdithkRRwxFkCk758kCPHtjwxhsljrz4Oywflt9/B956S3/8jzvOmjbdIClJJ+ilpxdf3QkoWIEungJkQHPYX3hBj0A8+6x9j5OdDXz8MTBokNZkThTXXKM7Ib/8okcfdu50ukexKy9PZ9Q3aeJ0T8gqKSla1/qvvxytYEGxhSPIFLy+fdFk6lTIH38AbdrYN4IsAtx1l+7lP/SQtW27Qc+eWn0gI6P4BKv0dC1oH4+jV9deq0s/P/CAFnzv1Mn6x5g2TRd5iIP0ipBdcomOJF90kdYuL2G5b0cnwLndtm26SE88boOJynfBkIwM3VYo6mLt+4MBMgWvd2/9+9VXwS2XHK6ZMzUP94UXNEiON97R4VmzCgfIhw/rQiJXXeVMv+xmDPDmm8CCBVoAfskSTdux0rvvAs2axU/OukdoPyz3A8sBNHjDru7EN5Z4iz8nngjUrAlMnao1fJl/TEFggEzBa9hQc2i/+kpXtLNDTo5WPWjRAhg+3J7HcFqTJvqFXXTZ6fnzdZJVHKRXBFWerFq1Eu7vFcJI56ZNumM1apTjExwphjFAjj/eBUO++krPM0COqpgqx+qDATKFpm9f4PHHdS/cDm++CaxcqYfKy5e35zHcoGdPfa6+y06np2vt1XPOca5fbvPaa8Dxxwd32w8+0PzROFpgJaIflt9+089ZmTLA8otKrJdMPhggx6eUFOCbb/T/DJApCAyQKTR9+mhtYu8XTQiCGlX0ClCBIJYXPiikZ0/gxReBn34quCw9HejSBahRw7l+WSSkupc7d+rKd3/9lX8yH+sPmNx4o+dG2h7attWAueipTh1Nr0hJ0aMPpEd75s3TSaFnnRXWNmuJffs0lSZWJkVt2KBHN+JgOyQfKSn6t04d4Oijne0LxQQGyBSaLl30C2bGDADHOt2b2OVddnrWLACVUREHdKWnUaOc7ln01amjp1NPLbjMm3O7cSPw11+Qc8/V88sALFtWcnsBArG42bkKRcuWWhe6WzddJAF3Wtp8SDu9Advwcsn7kpmpo8exEtBTvqA+jzt3BkzBct1nkYJmycJWRTBRj0JTpozWWp05EwZ5Id01f9GC3FydiHfRRRokArp3/9ZbOtpUwqIIcbPwgc+y0wCQjLWaHhAH+ceWatSIKSeROuYYDZLdvqrgO+8AixY53YuCAJmIYoZlC1v54Agyha5vXyAtDQ2xCZsQRq3Q5s31MGadOsDNN2v5r1atrO+nSwSuQHC2z/9bYTDGAGd+C+Bbv7d2aileN4h0qVKg+HKlCaVxY023qPeanp82zZKFVPLfl+x7gEmTtMb1339r7fI779SKLJUqFdxBRBfCWbYMWL4cWLYM5t3metXQoZ4baZsYOFCr5bRurX9btIjO0s+ZmfaUICTbWb2kMSU2BsgUUMmlpcYU/K+0Vbc+agVMnAjAU4uyZUv9Ie3fX1dZI3KZtGVpGDVnFDKzMtG0RlOkdkvFkDZ+Vj6MJb55lxdfrDnb/lZzDEfTpsCOHZqC9eSTGnyXKVP8dsboSHbDhsB55+ll73q+P1atApYvh1x0kZ6fBg3kQxTRYfIDB4Dt2zmCTEQMkCkKLrnEsyqVJ0B2arKQw4qNahw5AtSrpyNk33+vdZ9vuaXY/WKtuHqsS1uWhmHThyE7JxsAsD5rPYZNHwYAsR8ke3XtqtU+/vsPGDYs9Pv/8w/w3HMAjtLzp54K3H23thtu7q53wqWTNmzQvwyQiRIeA2Qqld/DVU88oSuibd4MNGigl+3fD3z0keYS//xzQa7wzJmaW1v2saj1OSaUKaMVBqZM0fPduzvbHwIAjJozKj849srOycaoOaPiJ0CeMUNHkW+4Qbdb33rcwWjRwjNC7JlUOn26ZV0r9TD5hg3AySdrbvXPPxcrBxnRYXKWeCMiD07So/D06aN/Z8zQldGGDdNA+dprdc37Z54puG2vXv4Pt5KWewP0kHPLls72hQAAmVmZIV0ekypV0lXFBg3SXOFHHtH8YH9EdInwbt0KLrvrLmDt2uj0tagmTYC33wYWLwbuv9/athkgE5EHR5ApoKBK5lx3XfHLVq4E7rqLJXM8gnodN29m6SGXaFqjKdZnrfd7eVwpX14XV6lcGRg9WivIPPVUQYpETg7wv/8BTz+tk+oaNQJwpl735JOOdRuA5jjfeKOmeXTvDvTubU27mZn6/Bs1sqY9ohjF1L4EGkE2xuSfxnj++V7mr4YeESWe1G6pqFyucqHLKperjNRuqQ71yEZly+po7E036VGfG28EsrI08DzmGODKK7X84KRJmnfsJs88o9UtrrpKK2NYITNTj+Z4y08SUcJKmBHkcGrgJTqWzLEGX0frRGNUw5tnHHdVLBDE0YzXX9eTr4wM4OqrgauvdtfRjEqVdIS7UycN5L/5JuBRmKCxBjIluGB+p0pc4j6OJEyATEQUrCFthsRFQBz3WrUCxo/XyYZPPw3ce29k7WVm6hLdRJTwGCC7iB1LJRI5yaoR39JGNRJlRCNScXk04/rrgdmzgQcfBM4+O/x2RDRAHjDAsq4RkX+xEO8kTA5yLLBjqUQiorhmDDBhgk6su+yy8NvZvh04dIgpFkRREAvxDkeQichyHPGlqKpZUytynHlm+G2wxBsR+WCATBQlLJtDFLzwtpeHwn9ABshE5IMBMkUdA0Uist2qVcAJJwR/ey4zTUQ+GCBT3HFb8j/TDchKbvt8Wy3i7WXTJl2KevA0YP58oEKF4B44M1MXTaldO4TeElG8YoBMUROt+oqxHBwQlYaf71I0agS88w7Qv7+WfRs/Prj7eWsgc9GomBdrRynjfac3VjFAplLF2pcNEUWX674j+vUDbrkFeOEFmBdqBXWXMZ+0BtAaKOG5hFsej6gkDH7diQEyEVERacvS4nIlvYTy5JPA998DvzvdEYoWprORlRggU0D8srFPIh5Si5XnnLYsDcOmD0N2TjYAYH3WegybPgwA4iZIjtYCLoCD3xMVK+pS1C2nAAAk90GgTBn/tz10SG//yCPAQ8UrYbhuhJyIbMcAmcgBbggEo83q5xxMwB3O446aMyo/OPbKzsnGqDmj4iZAThgnnljw/3HjgFGj/N9u40b9ywoWRMX4+64F3DnAYSUGyEQUk+z6Ms7Mygzp8liS0EeFRo8GzjkHOO204texBjJRQPEW+AaLS00TEfloWsN/kBTocooRTZsCl18O7NlT/DoGyERUBANkcpQxptBpjOdf0cuJoiW1Wyoql6tc6LLK5SojtVuqQz0iS3z4odZIHjYMKDoi5g2QGzeOfr+IyJUYIJOjRCSoE1G0DGkzBBP6TUCzGs1gYNCsRjNM6DeB+cex7pRTgEcfBT7+GJg4sfB1mZlA/frBLypCRHGPOchEREUMaTPE9QFxIpWis6wCyj33AHPmALfeCpx+OtCqlV6emQk0aWJBT4koXnAEmYgoxnhL0a3PWg+B5JeiS1uW5nTXbGHZUaakJGDyZKBqVWDwYODAAb3cu4oeEZEHA2QiohhTUik6KkWDBsCkScCyZcDdd2s+MgNkIiqCKRZERDEmnkvRRUWfPsDttwPPPw906ABkZzNAJqJCGCBTSGJlNTSieNa0RlOsz1rv93IK0hNP6FLUN9yg5xkgxyX+ZlG4GCBTSPhFQuS81G6phZbDBliKLhDBGP2Pn1UWC7noohLa8IrDBVTiHH+zKFzMQSYiijEsRUdEZC+OIBMRxaBYKEXnBsYzglzaMtsltuFZgptjkUSJgyPIRA5KW5aG5PHJSBqbhOTxyXFbpouIiCiWcASZyCHeWrbePFJvLVsAHBkkIiJyEEeQiRzCWrZERETuxACZyCGsZUtERORODJCJHBKoZi1r2RIRETmLATKRQ1K7paJyucqFLkuEWracmEhERG7HAJnIIYlYy9Y7MXF91noIJH9iIoNkIiJyE1axIHJQotWyLWliYiK9DkRE5G4cQSaiqOHERCIiigUMkIkoajgxkYiIYgEDZCKKmkSdmOhmxpj80xjPP9/LjDFOd5GIKOoYIBNR1CTixES3E5FST0REiYaT9IgoqhJtYiK5gzFjne4CEcUQjiATEREREfngCDIREcUtkdElXj/WM7I8upTbEVFiYYBMRESWCTSpb4wZU+g8c5uJyM0YIBMRkWUY+BJRPGAOMhERERGRDwbIRA5KW5aG5PHJSBqbhOTxyUhbluZ0l4iIiBIeUyyIHJK2LA3Dpg9Ddk42AGB91noMmz4MAFgGjYiIyEEm3vLFOnXqJIsWLXK6G0SlSh6fjPVZ64td3qxGM6y7bV30O0SUIIJZHTDefhuJyD9jzGIR6VT0co4gEzkkMyszpMuJyBoMfomoNMxBJnJI0xpNQ7qciIiIooMBMpFDUrulonK5yoUuq1yuMlK7pTrUIyIiIgIYIBM5ZkibIZjQbwKa1WgGA4NmNZphQr8JnKBHRETkME7SIyIiIqKEFGiSHkeQiYiIiIh8MEAmIiIiIvLheIBsjBljjNlkjFnqOfXxue5+Y8waY8wqY8x5TvaTiIiIiBKDW+ogPy8iz/heYIxpBWAwgJMANAQw2xhzvIgccaKDRERERJQYHB9BLsEAAP8TkUMishbAGgBdHO4TEREREcU5t4wgjzTGXAlgEYA7RWQ3gEYA5vvcZqPnsmKMMcMADPOc3W+MWRXEY9YFsCP8LkelTfYxMdqzo81E7GMiPmc72kzEPibic7ajTbe3Z0eb7GPst9fM34VRCZCNMbMB1Pdz1SgArwF4FIB4/j4LYGgo7YvIBAATQuzTIn9lPSJhdZvsY2K0Z0ebidjHRHzOdrSZiH1MxOdsR5tub8+ONtnH+G0vKgGyiHQP5nbGmDcBfOk5uwlAE5+rG3suIyIiIiKyjeM5yMaYBj5nBwJY7vn/FwAGG2MqGGOaA2gBYEG0+0dEREREicUNOchPGWPaQVMs1gG4AQBEJMMY8xGAFQByAdxkcQWLkFIyHGqTfUyM9uxoMxH7mIjP2Y42E7GPific7WjT7e3Z0Sb7GKftxd1S00REREREkXA8xYKIiIiIyE0YIBMRERER+UjIANkY08uzfPUaY8x9FrT3tjHmX2PM8tJvHVR7TYwx3xljVhhjMowxt0bYXkVjzAJjzO+e9sZa1M8yxpjfjDFfln7roNpbZ4xZ5llyfJEF7dU0xnxijFlpjPnTGJMSYXsn+CyJvtQYs9cYc1uEbd7ueU+WG2M+NMZUjKQ9T5u3etrLCKd//j7Pxpjaxph0Y8xqz99aFrQ5yNPHPGNMSOV4ArT3tOe9/sMYM9UYU9OCNh/1tLfUGDPLGNMwkvZ8rrvTGCPGmLoR9m+MMWaTz2eyT7DtldRHY8zNntcywxjzVIR9nOLTv3XGmKWR9tEY084YM9/7XWGMCXoRqQDtnWyM+cXz/TPdGFM9hPb8fl9Hss2U0GZY20wJ7YW1zZTQXiTbS4m/e6FuMyX0MextpqQ+hrPNlNDHsLeZEtoMa5spob2wthkTIB4xxjQ3xvxqNC6bYowpH8JzDtTmSE97IX3X5hORhDoBKAPgbwDHACgP4HcArSJs80wAHQAst6iPDQB08Py/GoC/IukjAAOgquf/5QD8CuBUC/p5B4APAHxp0fNeB6Cuhe/1uwCu8/y/PICaFn+OtgJoFkEbjQCsBVDJc/4jAFdH2K/W0EowlaGTcGcDOC7ENop9ngE8BeA+z//vA/CkBW22BHACgLkAOlnQXk8AZT3/f9KiPlb3+f8tAF6PpD3P5U0AfANgfSif9wD9GwPgrgg+L/7aPMfzuangOX90pM/Z5/pnATxsQR9nAejt+X8fAHMjbG8hgLM8/x8K4NEQ2vP7fR3JNlNCm2FtMyW0F9Y2U0J7kWwvAX/3wtlmSuhj2NtMCW2Gtc2U9JzD3WZK6GNY20wJ7YW1zSBAPAL9/Rvsufx1ACNCeM6B2mwPIBlhxhaJOILcBcAaEflHRA4D+B90Weuwicg8ALus6JynvS0issTz/30A/kSAVQSDbE9EZL/nbDnPKaLZmcaYxgD6ApgYSTt2McbUgP4QvgUAInJYRPZY+BDdAPwtIusjbKcsgErGmLLQoHZzhO21BPCriGSLSC6A7wFcGEoDAT7PA6A7HPD8vSDSNkXkTxEJZtXLYNub5XnOgK7C2diCNvf6nK2CELabEr4XngdwTyhtldJe2AK0OQLAOBE55LnNvxG2BwAwxhgAlwD40II+CgDviFUNhLDdBGjveADzPP9PB3BRCO0F+r4Oe5sJ1Ga420wJ7YW1zZTQXiTbS0m/eyFvM1b/jpbSZljbTGl9DGebKaHNsLaZEtoLa5spIR45F8AnnstD3V78tikiv4nIumDbKSoRA+RGADb4nA+4hLUbGGOSoXtBv0bYThnPYZp/AaSLSETtARgP/cLKi7AdXwJgljFmsdHlwyPRHMB2AO8YTQOZaIypEnkX8w1GiD/0RYnIJgDPAMgEsAVAlojMirBfywF0NcbUMcZUho4UNCnlPsGoJyJbPP/fCqCeBW3aaSiAmVY0ZIxJNcZsADAEwMMRtjUAwCYR+d2KvnmM9BzWftuEmPoSwPHQz9CvxpjvjTGdLWgTALoC2CYiqy1o6zYAT3vel2cA3B9hexkoGCgZhDC3mSLf15ZsM1b9BgTRXljbTNH2rNhefNu0Ypvx85wj3maKtBnxNhPgfYlomynS5m2IcJsp0l7Y20zReAR6VH+Pz85ayHGZDTFOQgbIMcMYUxXApwBuK7JnHjIROSIi7aAjBF2MMa0j6Nf5AP4VkcWR9MmPM0SkA4DeAG4yxpwZQVtloYdRXxOR9gD+gx7mjJgnN6o/gI8jbKcW9AumOYCGAKoYY/4vkjZF5E/oodJZAL4GsBSAlfXDIXocy7X1IY0xo6C109OsaE9ERolIE097IyPoV2UADyDCILuI1wAcC6AddCfrWQvaLAugNvQQ5d0APvKMZEXqMkS4U+ljBIDbPe/L7fAcKYrAUAA3GmMWQw8jHw61gZK+r8PdZqz8DSipvXC3GX/tRbq9+Lbp6VNE24yfPka8zfhpM6JtpoT3Oextxk+bEW0zftoLe5spGo8AODGUvgTTZiQxjlciBsgxsYS1MaYc9MOYJiKfWdWuJ83gOwC9ImjmdAD9jTHroCkq5xpj3regb5s8f/8FMBW64YRrI4CNPnuRn0ADZiv0BrBERLZF2E53AGtFZLuI5AD4DMBpkXZORN4SkY4iciaA3dCcsUhtM55VLz1/gz7sHk3GmKsBnA9giCcosVIaQjj07sex0J2h3z3bTmMAS4wx9cNtUES2eX4Y8gC8ici2Ga+NAD7zHLZcAD1KFPoEFx+eFKILAUyxoH8AcBV0ewF0RzWi5y0iK0Wkp4h0hAYkf4dy/wDf1xFtM1b/BgRqL9xtJoj+hby9+Gkzom3GXx8j3WYCPO+wt5kS3pewt5kAbYa9zQR4HSPaZjxt7IHGIykAanqeMxBBXGZRjAMgMQPkhQBaeGZMloceKv/C4T4V4tnzfAvAnyLynAXtHWU8s5ONMZUA9ACwMtz2ROR+EWksIsnQ1+9bEYlo5NMYU8UYU837f+jkkbCrgojIVgAbjDEneC7qBl2V0QpWjYRlAjjVGFPZ8553g+Z3RcQYc7Tnb1PoF+wHkbYJ3Uau8vz/KgCfW9CmpYwxvaBpP/1FJNuiNlv4nB2AyLabZSJytIgke7adjdDJL1sj6F8Dn7MDEcE242MadNIRjDHHQye47oiwze4AVorIxgjb8doM4CzP/88FEFHahs82kwTgQegkoWDvG+j7OuxtxobfAL/thbvNlNBe2NuLvzYj2WZK6GPY20wJ78s0hLHNlPI+h7XNlNBmWNtMCa9jWNtMgHjkT2hQe7HnZqFuL5bGOPkkjJmcsX6C5mX+Bd3jGWVBex9CD9XkQDfgayNs7wzo4bg/oIfIlwLoE0F7bQH85mlvOUKcRV5K22fDgioW0Koiv3tOGRa9L+0ALPI872kAalnQZhUAOwHUsOj1G+vZkJcDeA+eWdARtvkDdGfgdwDdwrh/sc8zgDoA5kC/VGcDqG1BmwM9/z8EYBuAbyJsbw10foF3mwl6Bn0JbX7qeW/+ADAdOhEp7PaKXL8OoVWx8Ne/9wAs8/TvCwANLHjO5QG873neSwCcG+lzBjAJwPAwP8/++ngGgMWez/ivADpG2N6t0N+EvwCMA3SV2SDb8/t9Hck2U0KbYW0zJbQX1jZTQnuRbC+l/u6Fss2U0Mewt5kS2gxrmynpOSPMbaaEPoa1zZTQXljbDALEI9AYYIHnM/kxQvgtLKHNW6DbSy50B2FiKK8ll5omIiIiIvKRiCkWREREREQBMUAmIiIiIvLBAJmIiIiIyAcDZCIiIiIiHwyQiYiIiIh8MEAmInIBY4z4LrhjjClrjNlujPmylPvVNMbcGET7hW5njGlojPkksl4TEcUnBshERO7wH4DWnkL3gBa7D2Y1qZoASg2Qi95ORDaLyMWBb05ElLgYIBMRuccMAH09/y+0YqMxZowx5i6f88uNMcnQIv3HGmOWGmOeNsZUNcbMMcYsMcYsM8YM8Nyl6O2SjTHLPW1VNMa847n9b8YY76pgVxtjPjPGfG2MWW2MecpzeRljzCRPH5YZY263+4UhIoqmsqXfhIiIouR/AB72pFW0BfA2gK6l3Oc+AK1FpB2gqRkABorIXmNMXQDzjTFf+Lldsk8bNwEQEWljjDkRwCzPkrmArkjZHrp62ypjzEsAjoauktba01bNSJ40EZHbcASZiMglROQPAMnQ0eMZYTZjADxujPkDusRxIwD1SrnPGdClciEiKwGsB+ANkOeISJaIHIQuYd4MwD8AjjHGvGSM6QVgb5h9JSJyJQbIRETu8gWAZ+CTXuGRi8Lf2RUD3H8IgKMAdPSMFm8r4bbBOOTz/yMAyorIbgAnA//fvh2qRBREcRj/jl18AEHxFfaBxOgrCBajVVCL6BNsMlgFMQi2RVCTwbSwySS7cAzOwkG8RYODfL8498xwpv0ZzuUa2AXOfnG+JHXHgCxJfTkHDjJz8mX9BRgBRMQI2Grrb8BqqVsDppk5b7PEmwN11Q2fwZo2WrEBPA012EY3VjJzDOwv+5Kk/8IZZEnqSGa+AkfffBoD2xHxANwBz61+FhG37Ye7K+AQuIyICXAPPA7UHZezT4DTtmcB7GTme0QMtbkOXETE8pFl7+c3lqT+RGb+dQ+SJElSNxyxkCRJkgoDsiRJklQYkCVJkqTCgCxJkiQVBmRJkiSpMCBLkiRJhQFZkiRJKj4AK3ewCXNYhOIAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 720x504 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"comp_name = '1BRS_A_D'\n",
"DoBoxPlot(comp_name, features_mt)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Different types of analysis:\n",
"- Changes of the binding affinity with respect to the region of point mutation (CORE, SUP, RIM introduced by [E. D. Levy, 2010]).\n",
"- Classification of changes of binding affinity based on favorable, deleterious, and neutral mutations."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
NATAA
start
71 A PIKAA Y
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
Complex;Mutation;Region;Method
1BRS_A_D;DD35A;COR;ITC
1BRS_A_D;DD35A;COR;SPR
1BRS_A_D;DD39A;COR;ITC
1BRS_A_D;DD39A;COR;SPR
1BRS_A_D;EA71A,DD35A;SUP,COR;ITC
1BRS_A_D;EA71A,DD39A;SUP,COR;ITC
1BRS_A_D;EA71A;SUP;ITC
1BRS_A_D;EA71C;SUP;ITC
1BRS_A_D;EA71F,DD35A;SUP,COR;ITC
1BRS_A_D;EA71F,DD39A;SUP,COR;ITC
1BRS_A_D;EA71F;SUP;ITC
1BRS_A_D;EA71Q,DD39A;SUP,COR;ITC
1BRS_A_D;EA71Q,ED74A;SUP,RIM;ITC
1BRS_A_D;EA71Q;SUP;ITC
1BRS_A_D;EA71S;SUP;ITC
1BRS_A_D;EA71W,DD35A;SUP,COR;ITC
1BRS_A_D;EA71W,DD39A;SUP,COR;ITC
1BRS_A_D;EA71W,ED74A;SUP,RIM;ITC
1BRS_A_D;EA71W;SUP;ITC
1BRS_A_D;EA71Y;SUP;ITC
1BRS_A_D;ED74A;RIM;ITC
1BRS_A_D;ED74A;RIM;SPR
1BRS_A_D;ED78A;SUR;SPR
1BRS_A_D;HA100A,DD39A;COR,COR;ITC
1BRS_A_D;HA100A,YD29A;COR,RIM;ITC
1BRS_A_D;HA100A,YD29F;COR,RIM;ITC
1BRS_A_D;HA100A;COR;ITC
1BRS_A_D;KA25A,DD39A;COR,COR;ITC
1BRS_A_D;KA25A;COR;ITC
1BRS_A_D;RA57A,DD39A;COR,COR;ITC
1BRS_A_D;RA57A;COR;ITC
1BRS_A_D;RA85A,DD39A;SUP,COR;ITC
1BRS_A_D;RA85A;SUP;ITC
1BRS_A_D;YD29A;RIM;ITC
1BRS_A_D;YD29F;RIM;ITC
File added
PDB.png

1.01 MB

PDB2.png

800 KB

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Effects of point mutations on the PPI"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Representation of 3D structure of proteins"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**PDB format:**\n",
"![](./PDB.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Different types of representation:**\n",
"![](./PDB2.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Single point mutations"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Below is an example of single point mutation: Non-synonymous substitution of an amino acid with\n",
"small side-chain (Alanine in yellow) by an amino acid with larger side-chain (Tryptophan\n",
"in white). In this mutation both wild-type and mutant amino acids, Tryptophan (Trp\n",
"or W) and Alanine (Ala or A), have the hydrophobic (non-polar) side-chains. However,\n",
"the size of side-chain is dramatically changed and if it happens on the interaction surface\n",
"it can affect the geometrical properties of the binding site."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![](./pointmutation.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Effects of three amino acid substitutions on the geometrical and chemical properties of interaction surface of protein complex 1IAR. We use Alanine, Tryptophan, and Glutamic acid (An amino acid with a negatively charged side-chain). The interaction surface changes its shape on the region in which\n",
"these three single point mutations happen. Moreover, these mutations change the charge\n",
"distribution and electronegativity of the surface which are parts of chemical properties\n",
"of the interaction site. For example, mutation from Glutamic acid to Alanine affects\n",
"chemical properties and in turn geometry of the binding site. Point mutations on the interaction site can causes changes in the binding affinity."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![](./Alanine.png)\n",
"![](./Tryptophan.png)\n",
"![](./GlutamicAcid.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Numerical measurement of the changes of binding affinity "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The most reliable methods to experimentally measure binding affinity between two proteins: \n",
"\n",
"- Isothermal Titration Calorimetry (ITC)\n",
"- Surface Plasmon Resonance (SPR)\n",
"- Spectroscopy (SP)\n",
"- Fluorescence (FL)\n",
"- Stopped-Flow Fluorimetry (SF)\n",
"\n",
"Advantages:\n",
"- Good accuracy\n",
"\n",
"Drawbacks:\n",
"- Expensive and hard processes \n",
"\n",
"**Solution: Computational approaches are proposed to numerically measure the binding affinity and its changes by exploiting the properties of protein complexes.**\n",
"\n",
"Fortunately the size of experimental databases of binding affinity is large enough to develop machine learning models and predict unknown binding affinity for given two proteins. These approaches analyzes input\n",
"protein complexes from different perspectives and extract various descriptors. One of these approaches is Local Interaction Signal Analysis (LISA) [R. Raucci, et al., ‘18]. According to LISA the geometrical\n",
"distribution of favorable and non-favorable regions are principle determinants of the value\n",
"of binding affinity.\n",
"\n",
"![](./distribution.png)\n",
"\n",
"Furthermore, a catergory of numerical approaches are developed to predict the changes of the binding affinity, among these approaches are FLEX ddG [K. A. Barlow, et al., 2018] and iSEE [C. Geng, et al., 2019]. \n",
"\n",
"\n",
"\\begin{equation}\n",
" \\Delta\\Delta G_{complex} = (G_{complex}^{MT} - G_{partner 1}^{MT} - G_{partner 2}^{MT}) - (G_{complex}^{WT} - G_{partner 1}^{WT} - G_{partner 2}^{WT})\n",
" \\label{eq:calculddg}\n",
"\\end{equation}\n",
"\n",
"Challenges:\n",
"- Mutagenesis and estimation of the structure of mutant protein complex.\n",
"- Identification of fine descriptors for prediction of changes of binding affinity."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Conformational models of complex"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Packages:\n",
"\n",
"Mutagenesis\n",
"- Pymol Package\n",
"- Non-optimized side-chain orientation angles\n",
"- Fixed backbone\n",
"\n",
"MODELLER\n",
"- Optimized side-chain orientation angles\n",
"- Fixed backbone\n",
"- Deterministic optimization process \n",
"\n",
"Rosetta Backrub\n",
"- Conformational sampling\n",
"- Simulation of near-native conformational fluctuations\n",
"- Flexible backbone\n",
"- For side-chains: Discrete combinatorial rotamer optimization (Repacking)\n",
"- For backbone and side-chain: continuous optimization of torsion angles\n",
"\n",
"![](./backbone.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Simulation of near-native conformational fluctuations"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is an example of near-native conformational fluctuations in which only the movement of backbone is shown. Complex: 5E9D."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![](./new_wt.gif)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Case study: Complex 1BRS"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Point mutations on 1BRS\n",
"From database SKEMPI v2 [J. Jankauskaitė, et al., 2018]"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"from IPython.display import HTML"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Complex</th>\n",
" <th>Mutation</th>\n",
" <th>Region</th>\n",
" <th>Method</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>DD35A</td>\n",
" <td>COR</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>DD35A</td>\n",
" <td>COR</td>\n",
" <td>SPR</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>DD39A</td>\n",
" <td>COR</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>DD39A</td>\n",
" <td>COR</td>\n",
" <td>SPR</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>EA71A,DD35A</td>\n",
" <td>SUP,COR</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>EA71A,DD39A</td>\n",
" <td>SUP,COR</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>EA71A</td>\n",
" <td>SUP</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>EA71C</td>\n",
" <td>SUP</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>EA71F,DD35A</td>\n",
" <td>SUP,COR</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>EA71F,DD39A</td>\n",
" <td>SUP,COR</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>EA71F</td>\n",
" <td>SUP</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>EA71Q,DD39A</td>\n",
" <td>SUP,COR</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>EA71Q,ED74A</td>\n",
" <td>SUP,RIM</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>EA71Q</td>\n",
" <td>SUP</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>1BRS_A_D</td>\n",
" <td>EA71S</td>\n",
" <td>SUP</td>\n",
" <td>ITC</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Complex Mutation Region Method\n",
"0 1BRS_A_D DD35A COR ITC\n",
"1 1BRS_A_D DD35A COR SPR\n",
"2 1BRS_A_D DD39A COR ITC\n",
"3 1BRS_A_D DD39A COR SPR\n",
"4 1BRS_A_D EA71A,DD35A SUP,COR ITC\n",
"5 1BRS_A_D EA71A,DD39A SUP,COR ITC\n",
"6 1BRS_A_D EA71A SUP ITC\n",
"7 1BRS_A_D EA71C SUP ITC\n",
"8 1BRS_A_D EA71F,DD35A SUP,COR ITC\n",
"9 1BRS_A_D EA71F,DD39A SUP,COR ITC\n",
"10 1BRS_A_D EA71F SUP ITC\n",
"11 1BRS_A_D EA71Q,DD39A SUP,COR ITC\n",
"12 1BRS_A_D EA71Q,ED74A SUP,RIM ITC\n",
"13 1BRS_A_D EA71Q SUP ITC\n",
"14 1BRS_A_D EA71S SUP ITC"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mutations = pd.read_csv('1RBS_mudations.csv', sep=';')\n",
"mutations[:15]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**EA71Y: Glutamic Acid (E) which is located on position 71 of chain A is replaced by Tyrosine (Y)**"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <video width=\"700\" height=\"400\" controls>\n",
" <source src=\"EA71Y.mov\">\n",
" </video>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"HTML(\"\"\"\n",
" <video width=\"700\" height=\"400\" controls>\n",
" <source src=\"EA71Y.mov\">\n",
" </video>\n",
"\"\"\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**YD29F: Tyrosine (Y) which is located on position 29 of chain D is replaced by Phenylalanine (F)**"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <video width=\"700\" height=\"400\" controls>\n",
" <source src=\"YD29F.mov\">\n",
" </video>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"HTML(\"\"\"\n",
" <video width=\"700\" height=\"400\" controls>\n",
" <source src=\"YD29F.mov\">\n",
" </video>\n",
"\"\"\")"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Unnamed: 0</th>\n",
" <th>#Pdb</th>\n",
" <th>Affinity_mut</th>\n",
" <th>Affinity_wt</th>\n",
" <th>Method</th>\n",
" <th>Mutation(s)_cleaned</th>\n",
" <th>iMutation_Location(s)</th>\n",
" <th>score</th>\n",
" <th>V106</th>\n",
" <th>V46</th>\n",
" <th>...</th>\n",
" <th>fa_dun</th>\n",
" <th>fa_elec</th>\n",
" <th>fa_intra_rep</th>\n",
" <th>fa_rep</th>\n",
" <th>fa_sol</th>\n",
" <th>hbond_bb_sc</th>\n",
" <th>hbond_lr_bb</th>\n",
" <th>hbond_sc</th>\n",
" <th>hbond_sr_bb</th>\n",
" <th>pro_close</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>1BRS_A_D</td>\n",
" <td>-14.595226</td>\n",
" <td>-19.098395</td>\n",
" <td>ITC</td>\n",
" <td>DD35A</td>\n",
" <td>COR</td>\n",
" <td>-37.392028</td>\n",
" <td>22.734529</td>\n",
" <td>65</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>-14.584290</td>\n",
" <td>0.000000e+00</td>\n",
" <td>1.513075</td>\n",
" <td>31.330962</td>\n",
" <td>-6.881513</td>\n",
" <td>9.806911e-11</td>\n",
" <td>-4.818615</td>\n",
" <td>-4.110490e-11</td>\n",
" <td>-2.458034e-13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>1BRS_A_D</td>\n",
" <td>-14.595226</td>\n",
" <td>-19.098395</td>\n",
" <td>ITC</td>\n",
" <td>DD35A</td>\n",
" <td>COR</td>\n",
" <td>-41.479745</td>\n",
" <td>29.370056</td>\n",
" <td>84</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>-18.466217</td>\n",
" <td>2.042810e-14</td>\n",
" <td>2.128390</td>\n",
" <td>36.751555</td>\n",
" <td>-7.798639</td>\n",
" <td>-2.842171e-11</td>\n",
" <td>-7.662563</td>\n",
" <td>-9.567458e-11</td>\n",
" <td>-1.742217e-13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2</td>\n",
" <td>1BRS_A_D</td>\n",
" <td>-14.595226</td>\n",
" <td>-19.098395</td>\n",
" <td>ITC</td>\n",
" <td>DD35A</td>\n",
" <td>COR</td>\n",
" <td>-32.221446</td>\n",
" <td>25.681126</td>\n",
" <td>100</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>-16.997991</td>\n",
" <td>4.440892e-16</td>\n",
" <td>1.668417</td>\n",
" <td>31.362962</td>\n",
" <td>-4.863814</td>\n",
" <td>4.533263e-12</td>\n",
" <td>-6.452159</td>\n",
" <td>1.352873e-11</td>\n",
" <td>5.129785e-13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3</td>\n",
" <td>1BRS_A_D</td>\n",
" <td>-14.595226</td>\n",
" <td>-19.098395</td>\n",
" <td>ITC</td>\n",
" <td>DD35A</td>\n",
" <td>COR</td>\n",
" <td>-34.218212</td>\n",
" <td>17.109655</td>\n",
" <td>43</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>-17.429030</td>\n",
" <td>-2.442491e-14</td>\n",
" <td>3.349478</td>\n",
" <td>35.340195</td>\n",
" <td>-5.736393</td>\n",
" <td>-7.325696e-12</td>\n",
" <td>-6.270114</td>\n",
" <td>4.133938e-11</td>\n",
" <td>1.644240e-13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4</td>\n",
" <td>1BRS_A_D</td>\n",
" <td>-14.595226</td>\n",
" <td>-19.098395</td>\n",
" <td>ITC</td>\n",
" <td>DD35A</td>\n",
" <td>COR</td>\n",
" <td>-40.002270</td>\n",
" <td>35.231729</td>\n",
" <td>127</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>-11.282555</td>\n",
" <td>1.643130e-14</td>\n",
" <td>2.109373</td>\n",
" <td>31.870106</td>\n",
" <td>-4.113794</td>\n",
" <td>-5.879741e-11</td>\n",
" <td>-4.344624</td>\n",
" <td>-1.236131e-10</td>\n",
" <td>-3.168021e-13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>5</td>\n",
" <td>1BRS_A_D</td>\n",
" <td>-14.595226</td>\n",
" <td>-19.098395</td>\n",
" <td>ITC</td>\n",
" <td>DD35A</td>\n",
" <td>COR</td>\n",
" <td>-37.382208</td>\n",
" <td>19.726724</td>\n",
" <td>93</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>-14.458624</td>\n",
" <td>1.421085e-14</td>\n",
" <td>2.395334</td>\n",
" <td>32.678929</td>\n",
" <td>-5.381401</td>\n",
" <td>-4.822098e-11</td>\n",
" <td>-6.376751</td>\n",
" <td>2.201332e-10</td>\n",
" <td>1.242340e-12</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>6</td>\n",
" <td>1BRS_A_D</td>\n",
" <td>-14.595226</td>\n",
" <td>-19.098395</td>\n",
" <td>ITC</td>\n",
" <td>DD35A</td>\n",
" <td>COR</td>\n",
" <td>-35.716695</td>\n",
" <td>21.512385</td>\n",
" <td>73</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>-13.554698</td>\n",
" <td>3.907985e-14</td>\n",
" <td>2.297274</td>\n",
" <td>31.204003</td>\n",
" <td>-4.171211</td>\n",
" <td>-8.792966e-12</td>\n",
" <td>-5.514953</td>\n",
" <td>-2.501110e-12</td>\n",
" <td>8.615331e-13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>7</td>\n",
" <td>1BRS_A_D</td>\n",
" <td>-14.595226</td>\n",
" <td>-19.098395</td>\n",
" <td>ITC</td>\n",
" <td>DD35A</td>\n",
" <td>COR</td>\n",
" <td>-35.638698</td>\n",
" <td>20.364375</td>\n",
" <td>90</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>-12.544474</td>\n",
" <td>-2.220446e-15</td>\n",
" <td>1.925979</td>\n",
" <td>31.691630</td>\n",
" <td>-5.339372</td>\n",
" <td>-4.988010e-12</td>\n",
" <td>-5.801806</td>\n",
" <td>-1.359481e-10</td>\n",
" <td>8.776313e-14</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>8</td>\n",
" <td>1BRS_A_D</td>\n",
" <td>-14.595226</td>\n",
" <td>-19.098395</td>\n",
" <td>ITC</td>\n",
" <td>DD35A</td>\n",
" <td>COR</td>\n",
" <td>-36.422295</td>\n",
" <td>17.993875</td>\n",
" <td>85</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>-17.583214</td>\n",
" <td>8.437695e-15</td>\n",
" <td>2.653895</td>\n",
" <td>37.434678</td>\n",
" <td>-7.270043</td>\n",
" <td>-2.137313e-11</td>\n",
" <td>-7.812436</td>\n",
" <td>-3.205969e-11</td>\n",
" <td>2.871314e-13</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>9</td>\n",
" <td>1BRS_A_D</td>\n",
" <td>-14.595226</td>\n",
" <td>-19.098395</td>\n",
" <td>ITC</td>\n",
" <td>DD35A</td>\n",
" <td>COR</td>\n",
" <td>-39.976612</td>\n",
" <td>25.388679</td>\n",
" <td>67</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>-14.494545</td>\n",
" <td>-1.820766e-14</td>\n",
" <td>1.128513</td>\n",
" <td>30.227993</td>\n",
" <td>-5.908867</td>\n",
" <td>-7.850787e-11</td>\n",
" <td>-5.013727</td>\n",
" <td>-2.022915e-11</td>\n",
" <td>-1.971756e-13</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>10 rows × 29 columns</p>\n",
"</div>"
],
"text/plain": [
" Unnamed: 0 #Pdb Affinity_mut Affinity_wt Method Mutation(s)_cleaned \\\n",
"0 0 1BRS_A_D -14.595226 -19.098395 ITC DD35A \n",
"1 1 1BRS_A_D -14.595226 -19.098395 ITC DD35A \n",
"2 2 1BRS_A_D -14.595226 -19.098395 ITC DD35A \n",
"3 3 1BRS_A_D -14.595226 -19.098395 ITC DD35A \n",
"4 4 1BRS_A_D -14.595226 -19.098395 ITC DD35A \n",
"5 5 1BRS_A_D -14.595226 -19.098395 ITC DD35A \n",
"6 6 1BRS_A_D -14.595226 -19.098395 ITC DD35A \n",
"7 7 1BRS_A_D -14.595226 -19.098395 ITC DD35A \n",
"8 8 1BRS_A_D -14.595226 -19.098395 ITC DD35A \n",
"9 9 1BRS_A_D -14.595226 -19.098395 ITC DD35A \n",
"\n",
" iMutation_Location(s) score V106 V46 ... fa_dun fa_elec \\\n",
"0 COR -37.392028 22.734529 65 ... 0 -14.584290 \n",
"1 COR -41.479745 29.370056 84 ... 0 -18.466217 \n",
"2 COR -32.221446 25.681126 100 ... 0 -16.997991 \n",
"3 COR -34.218212 17.109655 43 ... 0 -17.429030 \n",
"4 COR -40.002270 35.231729 127 ... 0 -11.282555 \n",
"5 COR -37.382208 19.726724 93 ... 0 -14.458624 \n",
"6 COR -35.716695 21.512385 73 ... 0 -13.554698 \n",
"7 COR -35.638698 20.364375 90 ... 0 -12.544474 \n",
"8 COR -36.422295 17.993875 85 ... 0 -17.583214 \n",
"9 COR -39.976612 25.388679 67 ... 0 -14.494545 \n",
"\n",
" fa_intra_rep fa_rep fa_sol hbond_bb_sc hbond_lr_bb hbond_sc \\\n",
"0 0.000000e+00 1.513075 31.330962 -6.881513 9.806911e-11 -4.818615 \n",
"1 2.042810e-14 2.128390 36.751555 -7.798639 -2.842171e-11 -7.662563 \n",
"2 4.440892e-16 1.668417 31.362962 -4.863814 4.533263e-12 -6.452159 \n",
"3 -2.442491e-14 3.349478 35.340195 -5.736393 -7.325696e-12 -6.270114 \n",
"4 1.643130e-14 2.109373 31.870106 -4.113794 -5.879741e-11 -4.344624 \n",
"5 1.421085e-14 2.395334 32.678929 -5.381401 -4.822098e-11 -6.376751 \n",
"6 3.907985e-14 2.297274 31.204003 -4.171211 -8.792966e-12 -5.514953 \n",
"7 -2.220446e-15 1.925979 31.691630 -5.339372 -4.988010e-12 -5.801806 \n",
"8 8.437695e-15 2.653895 37.434678 -7.270043 -2.137313e-11 -7.812436 \n",
"9 -1.820766e-14 1.128513 30.227993 -5.908867 -7.850787e-11 -5.013727 \n",
"\n",
" hbond_sr_bb pro_close \n",
"0 -4.110490e-11 -2.458034e-13 \n",
"1 -9.567458e-11 -1.742217e-13 \n",
"2 1.352873e-11 5.129785e-13 \n",
"3 4.133938e-11 1.644240e-13 \n",
"4 -1.236131e-10 -3.168021e-13 \n",
"5 2.201332e-10 1.242340e-12 \n",
"6 -2.501110e-12 8.615331e-13 \n",
"7 -1.359481e-10 8.776313e-14 \n",
"8 -3.205969e-11 2.871314e-13 \n",
"9 -2.022915e-11 -1.971756e-13 \n",
"\n",
"[10 rows x 29 columns]"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"features_mt = pd.read_csv('1BRS_features.csv', sep=';')\n",
"features_mt[:10]"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"def DoBoxPlot(pdb_name, df): \n",
" df = df[df[\"#Pdb\"] == pdb_name]\n",
" data = []\n",
" expr_b_aff = []\n",
" est_res = \"score\"\n",
" mutations = \"-\"\n",
" data_tmp = []\n",
" for index, row in df.iterrows():\n",
" if row[\"Mutation(s)_cleaned\"] != mutations:\n",
" expr_b_aff.append(float(row[\"Affinity_mut\"]))\n",
" if data_tmp != []:\n",
" data.append(data_tmp)\n",
"\n",
" data_tmp = []\n",
" mutations = row[\"Mutation(s)_cleaned\"]\n",
" data_tmp.append(row[est_res])\n",
" data.append(data_tmp)\n",
" \n",
" pred_b_aff = []\n",
" for data_tmp in data:\n",
" pred_b_aff.append(np.median(data_tmp))\n",
" \n",
" #Boxplot\n",
" plt.figure(figsize=(10,7))\n",
" boxplotElements = plt.boxplot(data,\n",
" sym = 'go', whis = 1.2,\n",
" widths = [0.8]*len(data), positions = range(len(data)),\n",
" patch_artist = True)\n",
" \n",
" for element in boxplotElements['medians']:\n",
" element.set_color('red')\n",
" element.set_linewidth(2)\n",
" for element in boxplotElements['boxes']:\n",
" element.set_edgecolor('navy')\n",
" element.set_facecolor((0,0,0,0))\n",
" element.set_linewidth(2)\n",
" element.set_fill(False)\n",
" for element in boxplotElements['whiskers']:\n",
" element.set_color('purple')\n",
" element.set_linewidth(2)\n",
" for element in boxplotElements['caps']:\n",
" element.set_color('black')\n",
" \n",
" plt.gca().yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5)\n",
" plt.gca().set_axisbelow(True)\n",
" \n",
" plt.plot(range(len(data)),expr_b_aff,'b*-', label = 'Experimental')\n",
" plt.plot(range(len(data)),pred_b_aff,'r-', label = 'Prediction')\n",
" \n",
" top = -4\n",
" for tick in range(len(data)):\n",
" plt.text(tick, top - (top*0.05), len(data[tick]),\n",
" horizontalalignment='center', size='x-small', weight='bold',\n",
" color='k') \n",
" \n",
" plt.ylim(-50, 0)\n",
" plt.title(pdb_name + ': Distribution of estimated $\\Delta$G ')\n",
" plt.xlabel(\"Mutations\")\n",
" plt.ylabel('$\\Delta$G (kcal/mol)')\n",
" plt.tight_layout()\n",
" plt.legend()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAHwCAYAAAC7apkrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAACgjklEQVR4nOzdd3wU1dcG8OeG3qvSIaioICBdo2KjSBEQFUV5bagIir2LCqhR7NgVURGN/rCBoqAEFLEhTRSCICgQutQAhpKQ8/5xdpNNsptsmdmZ3X2+fPYTtt29W2b3zJ1zzzUiAiIiIiIiUklOd4CIiIiIyE0YIBMRERER+WCATERERETkgwEyEREREZEPBshERERERD4YIBMRERER+WCATERERETkgwEyEREREZEPBshERBEyxmQYY862ui1jzDpjTHcr2i3adjQZY04wxiw1xuwzxtxi4+M48vyCYYyZZIx5zOl+EFFwGCATUT5jzEhjzCJjzCFjzKQi160zxhwwxuw3xuw2xnxljGkS4PqtnoCgapE2zjDG/GyMyTLG7DLG/GSM6Rxk3+Z6HrdCCM/H26d9xpg9nscebowJ+rsvmDZE5CQRmRtEO6UGu8G0Fayij2ll2yG6B8B3IlJNRF60okF/r6edz8/qnZUAjxHwM26MGWyM+dUY858x5l/P/280xhg7+0SUqBggE5GvzQAeA/B2gOv7iUhVAA0AbAPwUoDr2wFoD+B+7xXGmOoAvvTcpzaARgDGAjhUWqeMMckAugIQAP2DfjYFfaoGoBmAcQDuBfCWA22UyBhT1sr2XKYZgAynO+Fmns94WwB/oshn3BhzJ4AXADwNoD6AegCGAzgdQPmodpQoQTBAJqJ8IvKZiEwDsLOU2x0E8AmAVgGu3wrgG2ig7HW857oPReSIiBwQkVki8kcQXbsSwHwAkwBcFcTt/fUpS0S+AHApgKuMMa2tasN3dNEYc68xZpNnxHmVMaabMeY9AE0BTPeMsN/jc797jTF/APjPGFPWz0hlZ2PMCs/I4jvGmIreK4wxYow5zud8/mF8f49ZtG1jTEvPqOUeT3pCf5/r1hlj7jLG/OEZ8Z/i+9i+SmnnWwDnAHjZ04/j/dy/oTHmU2PMdmPMWt80jDBeT9/nt84Yc7fnOfxnjHnLGFPPGDPT095sY0wtz23vM8b87bl8hTFmoE87/l7LgH323Ke9MWaJp70pAPy+dj6uBDAVRT7jxpgaAB4BcKOIfCIi+0T9JiJDRKTUHUwiCh0DZCIKmTGmMjRInB/g+sYAegNY43PxXwCOGGPeNcb09gYmQboSQJrndJ4xpl54PQdEZAGAjdARaRhjXjXGvBpJG17GmBMAjATQ2TPifB6AdSJyBYBMeEbYReQpn7tdBqAvgJoikuvn4YZ42jkWupPxYJB9LOkxYYwpB2A6gFkAjgZwM4A0z3PwugRALwDNoaObVxd9nNLaEZFzAfwAYKSnH38VuX+S5/6/Q48qdANwmzHmvDBfz6IuAtAD+tr1AzATwAMAjoL+BnoD27+h72cN6JGN940xDfy9lgCeCdRnz3MqD2AagPegR0s+9vSjJFcC+BC643muz2c8BUAFAJ+Xcn8ishADZCIKxTRjzB4AWdCg42k/1+8DsAHAvwBGe68Qkb0AzoCmSbwJYLsx5ovSgl1jzBnQQ/QfichiaCBzeYTPYzM0cIGI3CgiN0bSho8j0GCmlTGmnIisE5G/S2nnRRHZICIHAlz/suf6XQBSoQG1FU4FUBXAOBE5LCLfQlNgfNt/UUQ2ex57OgofEQilnZJ0BnCUiDziuf8/0M/HYIT3ehb1kohsE5FN0ED9V8/o60HoiG17ABCRjz3PNU9EpgBYDaBLGH0G9DUpB2C8iOSIyCcAFgbqoOczXgWap70LwBwUfMbrAtjhu/NkNA9+j9Hc+DNDfD2IKAgMkIkoFBeISE3o4eKRAL43xtQvcn01AGcDOBH6455PRP4UkatFpDGA1gAaAhhfymNeBWCWiOzwnP8AYaZZ+GgEYJfVbYjIGgC3ARgD4F9jzP+MMQ1LaWdDCNevh75mVmgIYIOI5BVpv5HP+a0+/8+GBsLhtFOSZgAaegK+PZ4dsAcA1Avz9Sxqm8//D/g5XxUAjDFXGq204e1DaxT5/AbTZ8/1DQFsEhHxuc/6Evp4FXQH8IjnvO9nfCeAusYnR11ETvNshzvB33EiW3DDIqKQeXKIP4OO8J3h5/rvobmUz5TQxkrPbQLmAhtjKkEP859ltDLGVgC3AzjZGHNyOH03WjWjEYAfw7l/aW2IyAci4h31FgBPeq8K0Fygy72a+Py/KXTk2isbQGWf8747K6W1vRlAE1O4okdTAJtK6Y/V7WwAsFZEavqcqolIHyCs1zNkxphm0BHgkQDqeILP5QB8K0T4Pl6JfQawBUAjYwpVmGga4LG9n/EPfC7+AsBxns/4L9CJrAPCfoJEFDIGyESUz+gksYoAygAoY4ypaPxUVzBqAIBa0Fn3/owH0MMbyBpjTjTG3OnJT4bREnGXIUAes8cF0CC8FfTwfjsALaGHyq8M8blVN8acD+B/AN4XkWWh3D+YNozW+z3XaJmug9ARSu/I6jYAx4T6mABuMsY0NsbUBjAKwBSf65YCuNwYU8YY0wvAWUXuW9Jj/goNsO8xxpQzWj+4n+e5hSLSdhYA2Gd0Ml4lz3NpbYzpbNPr6U8VaAC8HQCMMdeg+I6b7+MF7LPn+l8A5AK4xfOaXIjA6RoXQI9E/O7Z3ipCP/MzAFwpInugOdGvGmMuNsZUM8YkGWPaefpNRDZggExEvh6EBiH3Afg/z/99J4VNN8bsB7AXmg97lYj4Ld8lItsBTAbwsOeifQBOAfCrMeY/aGC8HMCdJfTnKgDviEimiGz1ngC8DGCIv+Ddj+k+edGjADwH4BrvlcaY140xr0fSho8K0DJwO6DpCUejoNTdEwAe9BySvyuIfnt9AJ0A9w80/9p3sYlbocHoHuhkvmlF7hvwMUXksOe+vT39fRUakK0MoW8Rt+NJKzgfuvOz1tPGROhkOTteT399WAHgWWhguw1AGwA/FblZ/uNBj2IE6rP3NbkQOqlxF3RC62cBHv4qAMnQbc33NAiez7hnEuId0HrS2zynN6DlBn8O/5kTUSCmcIoUEREREVFi4wgyEREREZGPmAiQjTG9jBaIX2OMuc/p/hCRdYwxTY0uvuDv5HdikxX3JSIiCsT1KRbGmDLQBQZ6QAvzLwRwmSdnjIiIiIjIUrEwgtwFwBoR+ccz8eF/YLkbIiIiIrJJMDPAndYIhQvlb4TOhM9njBkGYBgAVKlSpeNxxx0Xvd4RERERUUz6/fffd4jIUUUvj4UAuVQiMgHABADo1KmTLFq0yOEeEREREZHbGWP8rnIZCykWm1B4JanGCH2lJyIiIiKioMRCgLwQQAtjTHNjTHkAg6HLcBIRERERWc71KRYikmuMGQngG+jyt28HWrmLiIiIiChSrg+QAUBEZkDXpSciIiJyrZycHGzcuBEHDx50uivko2LFimjcuDHKlSsX1O1jIkAmIiIiigUbN25EtWrVkJycDGOM090hACKCnTt3YuPGjWjevHlQ94mFHGQiIiKimHDw4EHUqVOHwbGLGGNQp06dkEb1GSATERERWYjBsfuE+p4wQCYiIiIi8sEAmYiIiCiOlClTBu3atcs/jRs3ztbH++KLL2x/jLlz5+Lnn38u9XaTJk3CyJEjI348TtIjIiIictCWLcDgwcCUKUD9+pG3V6lSJSxdujTyhoKQm5uL/v37o3///rY+zty5c1G1alWcdtpptj6OF0eQiYiIiBz06KPAjz8Cjzxi32NkZWXhhBNOwKpVqwAAl112Gd58800AQNWqVXH77bfjpJNOQrdu3bB9+3YAwN9//41evXqhY8eO6Nq1K1auXAkAuPrqqzF8+HCccsopuOeeewqN2l599dUYMWIETj31VBxzzDGYO3cuhg4dipYtW+Lqq6/O78+sWbOQkpKCDh06YNCgQdi/fz8AIDk5GaNHj0aHDh3Qpk0brFy5EuvWrcPrr7+O559/Hu3atcMPP/yA6dOn45RTTkH79u3RvXt3bNu2zdLXiyPIRERERDa47TagpIHcH34A8vIKzr/2mp6SkoCuXf3fp107YPz4kh/3wIEDaNeuXf75+++/H5deeilefvllXH311bj11luxe/duXH/99QCA//77D506dcLzzz+PRx55BGPHjsXLL7+MYcOG4fXXX0eLFi3w66+/4sYbb8S3334LQMvZ/fzzzyhTpgwmTZpU6PF3796NX375BV988QX69++Pn376CRMnTkTnzp2xdOlSNG7cGI899hhmz56NKlWq4Mknn8Rzzz2Hhx9+GABQt25dLFmyBK+++iqeeeYZTJw4EcOHD0fVqlVx11135T/G/PnzYYzBxIkT8dRTT+HZZ58t+YUJAQNkIiIiIgd06QL88w+wY4cGyklJQN26wLHHRtZuoBSLHj164OOPP8ZNN92E33//Pf/ypKQkXHrppQCA//u//8OFF16I/fv34+eff8agQYPyb3fo0KH8/w8aNAhlypTx+/j9+vWDMQZt2rRBvXr10KZNGwDASSedhHXr1mHjxo1YsWIFTj/9dADA4cOHkZKSkn//Cy+8EADQsWNHfPbZZ34fY+PGjbj00kuxZcsWHD58OOj6xsFigExERERkg9JGegFgxAhgwgSgYkXg8GHgoouAV1+1pz95eXn4888/UblyZezevRuNGzf2eztjDPLy8lCzZs2AucxVqlQJ+DgVKlQAoIG39//e87m5uShTpgx69OiBDz/8sMT7lylTBrm5uX5vc/PNN+OOO+5A//79MXfuXIwZMyZgf8LBHGQiIiIih2zbBgwfDsyfr3+3brXvsZ5//nm0bNkSH3zwAa655hrk5OQA0MD5k08+AQB88MEHOOOMM1C9enU0b94cH3/8MQBdjc531DkSp556Kn766SesWbMGgKZ4/PXXXyXep1q1ati3b1/++aysLDRq1AgA8O6771rSL18MkImIiIgc8tlnwCuvACefrH8DZBSExJuD7D3dd999WLVqFSZOnIhnn30WXbt2xZlnnonHHnsMgI4GL1iwAK1bt8a3336bnwuclpaGt956CyeffDJOOukkfP7555F3DsBRRx2FSZMm4bLLLkPbtm2RkpKSPwEwkH79+mHq1Kn5k/TGjBmDQYMGoWPHjqhbt64l/fJlRMTyRp3UqVMnWbRokdPdICIiogT0559/omXLlk53IyRVq1bNryIRz/y9N8aYxSLSqehtOYJMREREROSDATIRERFRAkuE0eNQMUAmIiIiIvLBAJmIiIiIyAcDZCIiIiIiHwyQiYiIiIh8MEAmIiIiiiNlypRBu3bt0Lp1awwaNAjZ2dlht3X11VfnLyJy3XXXYcWKFQFvO3fuXPz888/5519//XVMnjw57Md2EgNkIiIiojhSqVIlLF26FMuXL0f58uXx+uuvF7o+0PLNpZk4cSJatWoV8PqiAfLw4cNx5ZVXhvVYTmOATERERBSnunbtijVr1mDu3Lno2rUr+vfvj1atWuHIkSO4++670blzZ7Rt2xZvvPEGAF1SeuTIkTjhhBPQvXt3/Pvvv/ltnX322fAuxvb111+jQ4cOOPnkk9GtWzesW7cOr7/+Op5//vlCq90988wzAIClS5fi1FNPRdu2bTFw4EDs3r07v817770XXbp0wfHHH48ffvghyq+Qf2Wd7gARERFRXLrtNmDpUmvbbNcOGD8+qJvm5uZi5syZ6NWrFwBgyZIlWL58OZo3b44JEyagRo0aWLhwIQ4dOoTTTz8dPXv2xG+//YZVq1ZhxYoV2LZtG1q1aoWhQ4cWanf79u24/vrrMW/ePDRv3hy7du1C7dq1MXz4cFStWhV33XUXAGDOnDn597nyyivx0ksv4ayzzsLDDz+MsWPHYrzneeTm5mLBggWYMWMGxo4di9mzZ0f8MkUqYUaQv/vuOyQnJ6NGjRro3bs31q9fjy5duqBhw4YYMWKE4+0BwOrVq3HcccfBGIOvv/4a48ePR5UqVdC4cWP07dvXFW0mYh8T8TnHQh8T8Tknah+t/r6NheeciH1MxOcMAHl5edj/33/Yt28fcnNzcfjwYezbvx/79+9H9oEDIbd38OBBHDhwAMcffzzat2+PunXrokOHDlizZg3atGmD5s2bAwBmzZqFyZMno127djjllFOwc+dOrF69GvPmzcNll12GMmXKoGHDhjj33HNx+PBhLFu2DPv27cP+/fvx9ddfo3Xr1ti7dy9Wr16N2rVrl9inrKws7NmzB2eddRYAYPDgwfjmm2+waNEi5Obm4uyzz8aSJUtQsWJFrF69OqznvGzZMixatAhZWVnYtm0blixZgt9//z2s9oAEGkFOSUnB2rVrMXfuXPTs2RPjxo1DcnIyvv32Wxx11FG4/PLL0bVrV8faA4DmzZtj1apVKFu24G0pX748ypQpg+7du4fUll1tJmIfE/E5x0IfE/E5J2ofrf6+jYXnnIh9jMvnHMRIrxFBFQCLFy9GixYtcPDgQWzevBllypRBvXr1ULlevZD6WKFCBVSqVAkffPBBofaMMahWrVr+7UQEL730Es4777xC958xY0axNsuVK4fWrVsX7rcxMMagevXqIfUP0NesUqVKhc4bY1CmTBnk5eWF3F6FChXQunVrLF682JL+AdAXKJ5OHTt2lEBGjhwpFSpUkF69esm5554rd911l4iINGrUSCZNmhTwftFqzwuAzJw5UzZv3iyHDh2Szz//XJKSkmTXrl2uaTMR+5iIzzkW+piIzzkR+2jH963bn3Oi9jHWn/OKFSvCanPhwoWyZ88eOXTokBw5ckR2794tCxculJycnJDbqlKlSrH2pk+fLmeccUZ+e2+88YYMGDBADh8+LCIiq1atkv3798unn34qPXv2lNzcXNm8ebPUrFlTPv74YxER6dChg3z33XeyceNGady4sSxdulQWLlwo27ZtExGRZ555Rh5++OH8fowePVqefvppERFp27atzJs3L//y2267TRYuXCinn366/Pzzz3LkyBFZs2aNNGjQIKznHMxr6O+9AbBI/MSTCZNikZWVhZdeegnLly/H119/jby8PKxfvx779u3Dzp07ccwxxzjanj9bt25FUlISKlSoABEJa6/K7jYTsY+J+JxjoY+J+JwTpY92f9+68Tmzj4n5nAHNx/WOflrB215R1113HVq1aoUOHTqgdevWuOGGG5Cbm4uBAweiRYsWaNWqFa688kqkpKQUu2+tWrXwxhtv4IorrsDll1+Oyy+/HADQr18/TJ06NX+Snq93330Xd999N9q2bYulS5fi4Ycfzr/uyJEjtjzniNrzFzXH8inQCPILL7wgjRo1klq1asmAAQNkxYoV0qlTJ6lfv74MGzbM731KYnV7IiKrV6+WOnXqCACpXr26jBkzRurXry9HHXWUjBs3zhVtJmIfE/E5x0IfE/E5J2ofrf6+jYXnnIh9jJfnHOoI8oEDB+S3336ThQsXypIlS2TTpk2ydOlS+e2332Tz5s0h99Hq9mKhj8G2F8oIstHr4kenTp3EW4KEiIiIKJr+/PNPtGzZ0ulukB/+3htjzGIR6VT0tgmTYkFEREREFAwGyEREREQWirej8/Eg1PeEATIRERGRRSpWrIidO3cySHYREcHOnTtRsWLFoO+TMHWQiYiIiOzWuHFjbNy4Edu3b3e6K+SjYsWKaNy4cdC3Z4BMREREZJFy5crlr1ZHsYspFkREREREPhggExERERH5YIBMREREROSDATIRERERkQ8GyEREREREPhggExERERH5YIBMREREROSDATIRERERkQ8GyEREREREPhggExERERH5YIBMREREROSDATIRERERkQ8GyEREREREPhggExERERH5YIBMREREROSDATIRERERkQ8GyEREREREPhggExERERH5YIBMREREROSDATIRERERkQ8GyEREREREPhggExERERH5YIBMREREROSDATIRERERkQ8GyEREREQh2rIFOOssYOtWp3tCdmCATERERBSiRx8FfvwReOQRp3tCdmCATERERBSkSpUAY4DXXgPy8vSvMXo5xQ8GyERERERB+ucf4PLLgbJl9XzFisCQIcDatc72i6zFAJmIiIgoSA0aAFWqALm5ev7QIaB6daB+fWf7RdYq63QHiIiIiGLJ77/r39q1NUDessXZ/pD1OIJMREREFIJatYDGjYFXXgH++w8YPtzpHpHVGCATERERBWndOmDWLGDoUGDgQKBOHeCtt5zuFVmNATIRERFRkN5+W/8OHQpUqABccQUwbRqwY4ej3SKLMUAmIiIiCkJurgbI550HNGumlw0dCuTkAGlpzvaNrMUAmYiIiCgI33wDbNoEXH99wWVt2gCdO2uahYhzfSNrMUAmIiIiCsKbbwL16gH9+hW+fOhQYNkyYPFiZ/pF1mOATERERFSKLVuAL78Err4aKFeu8HWXXaYr6XGyXvxggExERERUinfeAY4cAa69tvh1NWoAF18MfPABkJ0d/b6R9RggExEREZUgLw+YOBE4+2ygRQv/txk6FNi7F/jss6h2jWzCAJmIiIioBN9+C6xdW3hyXlFnnQUceyzTLOIFA2QiIiKiEkycqMtKX3hh4NsYA1xzDTB3LvD331HrGtmEATIRERFRADt2AFOn6oIgFSuWfNurrgKSkjRfmWIbA2QiIiKiACZPBg4fBq67rvTbNm6si4hMmqQT+ih2MUAmIiIi8kNEax+feirQunVw97n2Wl1MZNYse/tG9nI8QDbGDDLGZBhj8owxnYpcd78xZo0xZpUx5jyn+khERESJ56efgJUrS56cV1S/fkDdupysF+scD5ABLAdwIYB5vhcaY1oBGAzgJAC9ALxqjCkT/e4REREFb8sWrWiwdavTPaFITZwIVKsGXHpp8PcpX17zlb/4Ati+3b6+kb0cD5BF5E8RWeXnqgEA/icih0RkLYA1ALpEt3dEREShefRR4McfgUcecbonFIk9e4CPPgIuvxyoUiW0+w4dCuTkAO+/b0vXKArKOt2BEjQCMN/n/EbPZcUYY4YBGAYAjRs3xq5du+zvHRERkY+GDWvh0CGTf/611/RUoYJg8+bdDvaMwvHWWxVw4EAVXHJJFnbtCm3GXcOGQIcO1TFhAnDllXthTOn3IXeJSoBsjJkNoL6fq0aJyOeRti8iEwBMAIBOnTpJ7dq1I22SiIgoJGvXamrF6tV6vkIFXX74mWcM+LsUW0R02ej27YFzz60RVhs33KCnv/+ujS48/h1zopJiISLdRaS1n1NJwfEmAE18zjf2XEZEROQ6M2YUBMfGAIcO6WH2+v6Gh8jVFi8Gli4NrrRbIIMHA5UqcbJerHI8B7kEXwAYbIypYIxpDqAFgAUO94mIiKiYBQuAG28EjjoKGD4cmDkTqFxZJ2pt4tBOzJk4UYPbIUPCb6N6dWDQIODDD4HsbOv6RtHheIBsjBlojNkIIAXAV8aYbwBARDIAfARgBYCvAdwkIiy7TURErrJtmy5B3LAh8Oefmnd83nnAzz8D5coBffoAe/c63cvY4mQlkP37Nb3ikkuAGuFlV+S79lpg3z7gk0+s6RtFj+MBsohMFZHGIlJBROqJyHk+16WKyLEicoKIzHSyn0REREXl5GggtWuXLkdcp07BdSefrIHRihWai5yT41w/Y42TlUA++kiD2lBqHwfStStw3HFMs4hFjgfIREREsequu4B58/SQfLt2xa/v2ROYMAFITweGDdPJXxRYpUqav/3aa0Benv41Ri+PljffBFq2BE47LfK2jNGSb/PmFeSnU2xggExERBSGyZOBF18Ebr9da+UGcs01wOjRwKRJwNixUeteTPrnH6BvX+SXRStTRl/btWuj8/jLlwPz5+vosVWl2a66CkhKAt55x5r2KDoYIBMREYVoyRIt4XX22cBTT5V++9GjNVAeOxZ4+23buxezMjOB2bN1pL1MGeDIEWDVquhVAnnzzYKV8KzSsCHQuzfw7rtAbq517ZK9GCATERGFYMcOYOBArVjx0UdA2SBWFDAGeOMNoEcPTbX45hv7+xlrZs4Ezj1XA+MhQ4BFi4ATT9SSax9/bP/jHzwIvPeevrd161rb9rXXAps3832PJQyQLeLkjFsiIoqO3Fzg0ku1csXUqRokB6tcOZ2017q1TtpbutS2bsacyZOB/v2BE07QNIv339ec7qVLgVNPBa6+Gvj9d3v78NlnwO7d1kzOK6pvX/2scLJe7GCAbJGHHnJuxi1FD3eEiBLbffcB334LvP460LFj6PevXh346iugZk0t/5aZaXkXY84zz2ie7llnAXPnAvXqFVxXoYIGrjVrAgMG6Oi9Xd58EzjmGOCcc6xvu3x54MorgenTgX//tb59sh4D5Ah5Z9y+9ZZzM24pepwsPUREzvrwQ+DZZ4GRI3VEM1yNGmk6wX//aZC8Z49VPYwteXnAnXcCd9+tpfK++kp3IIpq0EBH67du1YU37CiXt3q1BufXXacT6uwwdKgegXjvPXvaJ2sxQI7QqlXFc5WqVgWeflonF1B8cEPpoWBxlJvIer//rnmkXbsCzz0XeXutW2vQ99dfusjIoUORtxlLDh/WEdXnngNuvll3PipUCHz7Ll10hHfuXK0aYrWJEzX3OZIdn9K0aqXpIm+/zXJ/sYABcoRefVUP+RgDVKyofytU0A2+TRvNN8vLc7qXioFTeA4e1JFj35GN8uV1Ekm0Sg+FgqPcRNbatUsnbtWqpZPyypWzpt1zz9Vg6bvvNPhOlKBp/37NN05LA1JTgRdeCG7U9oordMT5lVc0WLZKTo6W4Dv/fB2tttO11+rCMb/+au/jePF3P3wMkCMwYwbw5JNAcjIwYoTWThwxQkcYPvpIv+wGDQI6dNC8I6e//JgnHZodOzTYbNZMDwGWK6c7QMbo6Ef16tErPRSMWBrlJooVR44Al10GbNoEfPqp9dv8//0f8NhjGiw++KC1bbvR9u26Y5CerqO2DzwQWr3hceN08ZWbbgJ++smaPnnzgu2YnFfUJZcAlStHb7LeI4/wdz9sIhJXp44dO0o0bNggUqeOSNu2ItnZ/m+Tmyvy3nsixx4rAoh06SLyzTcieXlR6aKIiKxcKVK2rD5+0VPFitHrRyz56y+RESNEKlXS16lPH5E5c0QGDhS58UaRe+7Ry886y+meFrZ5s8jll4uUKVPw/g4ZIrJli9M9I4pd992n29Obb9r3GHl5Itdfr4/zxhv2PY7T1q4VadFCv5s+/zz8dnbtEjnuOJF69UQyMyPvV69eIo0b6292NFx9tUjVqiL799v3GBUr8nc/WAAWiZ940vGA1upTNALknByR00/XD/jKlaXf/vBhkYkTRZo21Ve8a1eRuXPt6VtensjChSIPPCDSsmXBRlG7togx+v9KlRg4FZWXJ/LDDyIDBujrVL68yLXXimRkFL/tvn0iNWuKXHxx1LtZqksuKfxlOHy40z0iil0ff6zb0Q032P9YOTm6M56UJPLVV/Y/XrT9/rtIgwYitWqJ/Phj5O1lZOhvcMeOgQepgrFunX7nP/xw5H0K1rx5+rl65x37HmPGjIJBHu8pOVnkzz/te8xYxQDZQt4RhbS00O538KDIyy/rlwQg0r27yC+/RN6fnByRb78VuflmkSZNtO0yZUTOOUfkxRd1D3v48IIA2RgdISV97aZM0dF9747Egw+WvvNw7736Q/bPP9HpZ7CaNtX3fuRIfT4dOjjdI/LavFnkzDO5Yxorli8XqVJFJCVFv7ujYd8+3WarVBFZtCg6jxkNc+eKVK8u0qiRvq5W+fxz/Z4bMiT8I7MPP6y/ievWWdev0uTliRx/vA6W2SEtTUeKq1bV51axov41Rt+Db76x53FjFQNki8ycqa/a9deH30Z2tsizz4ocdZS21bevyOLFobfx+ed6qKZOHck/dNK/v+6V7thR+PYDB2pQ3Lq1bjQDBoTf/3iwd6/I+PG6Rw3o4bpXXxX577/g7r9xo6au3HKLvf0Mxbp12qdbbxU5ckS/fGvVYkDmFiNG6E4Vd07db/du/U6oX19k06boPvaWLSLNmmn6wNq10X1sO3z6qUiFCnpEc/1669t/9FH9Dn/66dDvm5urqRW9elnfr9KMG6f9XrXKujaPHBG5/37JP1Ldp4+mBS5dqn/POafgyPKNN9qb4hFLGCBbYONGkbp1Rdq0ieyQjte+fSKPP65BDCBy4YUiy5bpdf5Gm3bvFnn/fZGLLtIRBkCkRg3de/7kE22vNF9+qfd7++3I+x8Lir6OGzfq6G/Nmvo6nHGGyNSp4eWeXXGFvg+7dlna5bCNHClSrlxBTt7KlZoqcsklzvYr0TEXMLYcOaKBRdmy1qQChGPFCv2OOvFEkZ07nemDFV57TXcKTz21+KCNVfLyRAYN0seZOTO0+371lW6Ln35qT99KsnmzHu27915r2tu7VwfIAJHrrhM5dMj/7bKzRe64Q0eTW7Sw5ih2rGOAHKGcHN0jq1LF+hyePXtERo8WqVZNP7SXXaanpCSRK6/UL5mePQsm29WvrykT33wTeCMIJC9PpH17HR3JybH2ebiRd9Ru0CB9LcuVKzg/f35kbS9dqu/HuHHW9DUSW7dqwDV0aOHLH3tM+xjJhBgK319/6bZavnxBYFyuHOcAuNlDD+n79Oqrzvbj++/1c9O1q6ZyxVJ6Tl6eyJgxkn+ENNgjc+Hav18nzNeoEdqI7AUXiBx9dOi/o1bp109/zyP9Lf7nHz06XKaMplUGk27y3XeakpeUJDJqlHOvgRswQI7QAw/oq/X++7Y0LyK6h+2tQFD0ZIzI3XeL/PyzjnBE4tNPJawc6lgSaNSuTBlr84a7dxdp2ND5L5f779fPSNFJo4cO6RGPRo1EsrKc6VuiOXxYJ3d161bwmWveXN+fpCS9rH9/p3tJ/kybpu/P0KHRrTYUyIcfan+OPTZ20nNyc3VSI6ApgIcPR+dx167VdMMTT9RBp9J4R3Dvucf2rgU0daq+Tl98EX4b332nz7tmTZH09NDum5Ulcs012od27QqOYCcaBsgR+Ppr/XG79lrLmy5m82ZNtfCOFpcrp3vgmzdb9xhHjoicdJJIq1aRB9tutXmzjg74jtoNGmT9CIw3J33yZGvbDcWePToBJlBVjV9/1c/vTTdFt1+JZu1a3ZGuV08/E02b6gj+5s0FJQJ/+klHuSpU0FF/co8//9SjeJ07ixw44HRvVCyl52zerClrffpoH++7L/o7Gd99p0Fv376lp809/rj286+/otI1vw4f1u+LCy4I7/6vvaaxwoknRvY8pk3TOVHly2sud7TK3bkFA+QwefOOW7e2/zCR1/DhOlpQsaJ9owYffKDv/scfW9+2W3jrT1eoYN/rmJenOxtt2zo34vTEE/o8S5roedttGiQ7lVMZr3Jy9Meld++CEeJ+/TS3MdCPzB9/6LZ97rmJ90PkRps3i5x2mn5fHHWUNXV1rbJ5s6bb+dayr1VLg0+3lesaOrSgj88/71w/Xn5Z+/DAA4Fvc+SIyDHHiJx9dvT6Fcjdd+v7G8oO8+HDusMN6HdPMCPmpdm2rWBQ6cwz3VehyU4MkMOQk6MflMqVddJEtHhHm7wzTwcOtP4xcnO1zMzJJ7vjUKLVZs/WT3enTva+jiIib72ljxXq4S0rZGdrDt1555V8u337dGZ8y5bRK1kVzzZs0HkDjRrpe9+woZaLCja48n5moll7lfwbPrwgsLOrPn0kvAMmFSroTtjRRxf0t2VLLUu5ZEn0v8cPHdIdbrctRJWXp5PUAJH//c//bebMEdekGf75p/blqaeCu/2OHbpzDYjcdZe1O9l5eSLvvqtHJKtW1fUb4jE+KIoBchgefFBfoXfftaxJV5k0SSLOf3KjQ4dETjhBR4Sicaj04EE9TOZEqSDvaEkwP+zedJDRo23vVlwoWgElN1eL7/fvrwGLMfqeT50a+iSbvDyRq67SNmbNsrrnFIxYSV/wN2CyYYPISy/pCKg3r715c5E779Q0HjtS53JytOLB44+L9OihA0fe16xmzYJAuXJl5yehHjqki3lVqiTy22/Frx88WEfi3ZJKc9ppmiZRWjCakaG/a+XL6++3XdavLwjCzz8/diaHhosBcohmzdIfr6JVAeLJ4cNaB7hz5/jaS/Tmls2YEb3H9NbitLIIfmkOH9ZR4ZSU4N+/IUM0Hzua/YxV3gooV10lkpqqrzWgI3j33x/5Icj9+zU956ijol9rl3QH6NJLC4I8NwR24fj3Xx3p69NHt21AF6O68UY9khZuhYScHJEFC3Rks3dvHVH0vlatW2tZyU8/1RHNaKQFhmrrVq1x3LSpvkZe27drgOmmGvYTJ+rr+tNPgW8zfbrmyNerp5P17XbkiMgLL+h7WqeOlpKNVwyQQ7Bpk/5onXRS9PKOnfLGG/opiJeVddat01GDCy+M7uPu2KGPG80dqsmT9b2bPj34+/z7r37ZpaTE7wTNSAUaWUxK0lUXraxYsmKFlo7s2jUxyi66zRln6Htbvrx7ArtI7NmjaQMXXVQwwlu7tlYqmD698IipvyMkixfrIlbnn6+H2X1TOUaMEPnoI81VLSoaaYHhWLhQt+czzyyopvHcc/qc3FSxYe9e/R7w9/uRlyfy5JM6YNehQ/Rz5Fes0FRFQGv/794df6uCMkAOUm6uHraqXFkPZ8S7gwd1L/uMM+JjFHnAAH3vnJhoc+ON+kMbjS+NI0f0R6tNm9Dft/fe0y3/5Zft6Vus27y5oEQboIeO+/Wz7331vh/33WdP++TfgQMaPNWvr4fh3RTYWeG//0Q++0zk//5PK6cAOgI5eLAGutdeq0HX6afr96Z3wSpA56cMG6Zl5mI9CHr/fX1ON96og1+VKmmg6TZDh2qQ7Lvg14EDGpQCuuCTUwN2hw9rXesyZTRe6NcvPnYovRggB+nhh/VVsTO/x21efFGf83ffOd2TyHhXCXRq4Y7Vq/UHZ9Qo+x/LWz8znEkmeXk6qa9qVXfN2HeLjIyChT3srIDi6/rr9fG++srex6EC3u+9b791uif2O3RI5yB4P2eBasS//75Wboo3d9+tz/HEE/WvG6pXFPXjj9q3Z5/V0dmlS0W6dNHLHn3UHQNYvgseuTlvP1SBAmSj18WPTp06yaJFi8K67+zZQM+ewFVXAe+8Y3HHXOzAAaB5c6B1a30NYtGBA8BJJwEVKwJLlwLlyzvTj4EDgXnzgMxMoEoVex5DBDj1VGDHDmDVKqBs2dDbWLdOX69zzwW++AIwxvJuxqStW/W13boVGDQIuOsuYMIEYMsW4LPP7HvcAweAlBRgwwbgt9+Apk3teyzS1/uYY4ATTgDmznW6N9G1cSNwzTX6vHNz9TvzoouAZ54B6td3unf2qFQJOHiw+OUVK+pnwQ1EgJYtgawsYNs27bMxwHvv6e+KG2zZAtx2G/Dpp8CRI/rbc8klwLPPxvZnxxizWEQ6Fb08yYnOuNGWLcCQIfoBffllp3sTXZUqAXffDcyZA/zyi9O9Cc8TTwBr1wKvvupccAwAd94J7NoFvPuufY/x7bfAggXAPfeEFxwDQHIy8NhjwJdfAh99ZGn3Ytb+/cD55wPbtwM//aQ/TCefDLzyir3BMaDb4McfAzk5wKWXAocP2/t4ie6NN3QnaOxYp3sSfY0bA8cdB+TlaYB4+DBQvXpsBzil+ecf4OKLCwYCKlfW3/u1a53tl6/KlXXAY+tWDZazs4H//gMuv9zpnhVo0ACoXVv7V6aM7mD9/DNQo4bTPbMHA2TontCQIcC+fRos2DXy52Y33ADUqQM8+qjTPQnd6tXAk0/qF8nZZzvbl9NPB7p0AZ5/Xj9XdnjiCf0xu+qqyNq55Ragc2fg5puBnTut6Vusys0FLrtMR2+nTAE6dox+H1q0AN56C5g/H7j//ug/fqLIzgbGjQPOOQc46yyne+OMbduA4cP1szZ8uAZl8axBA6BuXQ2QK1bU0WS37RT880/hkeJKldwXxAMFn53Fi4EzztCjkd26xelviL+8i1g+hZODPHq05tG8807Id40rqan6Oixa5HRPgufNp61e3drluCMxZYq+jlOnWt/2ggUSUlH50ixdqpPQrr7amvZiUV6e5hgDunSr00aOtO/zQ5rjCYjMm+d0Tyia3Fppw5cby+WV5pNPdK7GCSfE7up7YA6yf99+C3TvDlxxhb2HxWPB3r1As2Y6Cjt1qtO9Cc4nn2iu6Asv6IioG+Tm6mhg48bADz9Y2/aFFwLffac5ztWqWdPmqFHA448D6em6LSSap5/WdJV77tEjEU47dEhHZlavBpYs0VxZssZ//+nr2batft6J3OTCC3W0e9iw6Mx9sMqPPwL9+2t644wZQIcOTvcoNIFykBM6QN66FWjXTnNqFi5MzNSKokaPBh55BPjjD6BNG6d7U7L9+4ETTwSOOkrfv3Dzce3wwgs6mWH+fOCUU6xpc8UKnVj30EP6Hlnl4EHNtc3NBZYt01y4RPHRR5rze+mlwAcfAEkuSTpbuxZo315zRX/6CahQwekexQfvztBPPwGnneZ0b4jix59/Ar166RycTz/VggexgpP0fGzZApx5po487t2buHnH/tx6K1C1KpCa6nRPSvfII8CmTToxz03BMQAMHaoTF5591ro2n3xSg1erR8orVtTRin/+AcaMsbZtN/vpJ+DKK3W0dtIk9wTHgFaVmTRJ8/zuusvp3sSH/fuBp57SH24Gx0TWatlSJ/kfcwzQty8webLTPYqci34SoufRR/WQwI8/asWK1q2d7pF71K4NjBypOw0rVzrdm8AyMnQi3LXXankst6lWTSc+fvqpNZMs1q/XEc7rr9fJJlY76yxt+9ln9bB+vPvrLz0k2KwZMG2a7iS4zQUXAHfcod9RrDQSuVde0dKIiVi5gigaGjbUMqdnnaWTyB9/XCtexKqESrGIhVqIbvDvv1oGbNAgd+Zli2ie9PLlWhbHjoDRChs36kjgTTcB48dH1tbNN2tpqr//Bpo0saR7xezZo6MA9etrGbly5ex5HKf9+6/uVO3bpyMexx7rdI8Cy8nRH5vly3U0uUULp3sUm/bt022xc2dg5kyne0MU3w4f1qOoaWnAjTcCL76oZeHciikW0EPIl19eMFrk1jIqTjv6aC3jkpamr5nbpKXpXuq4ce4NjgGdpDd4sJbu2rMn/Ha2bQMmTtSJpHYFxwBQs6aOsi1dqqPz8Sg7W0eOt2wBpk93d3AM6E7KlCn6d9Ag7siH6+WXtQwVR4+J7Fe+vKZY3HOPpkBefHFsfnclVIDcoIHWPjx8WIPkQ4fcVwvRLe66S/N6n3jC6Z4UtmePLsZxyimaXuF2d96puY8TJoTfxgsv6Gf1nnus61cgF16otThHjwbWrLH/8aLpyBHg//5PR8c/+MC6yZN2a9JEFy35/Xed+Emh2btXJ+f17as1yonIfklJOm/mxReBzz/XCkmxVis5oQJkIPEKpIerYUMNQN99V0uKucVDD2ke4auvumtSVSDt2mkR9RdfDG91tKwsHdW96CJdFjcaXn5ZRwBuuCG288eKuusuLV/4/POa3xtL+vQB7rtPd7Tef9/p3sSWF18Edu9OrAmoRG5x8826SujixbqQ1rp1TvcoBP6KI8fyKZyFQsi/9etFypUTuekmp3uiFi/W4ukjRzrdk9DMmKELE0yeHPp9n3hC77t4sfX9Kskbb+jjvv12dB/XLi+8oM/n1lud7kn4cnJEunYVqVxZZMUKp3sTG/bsEalZU6RfP6d7QpTY5s3TbbF+fZElS5zuTWHgQiEUjuuv18O7a9dqiopT8vK0NNO6dVpdo2ZN5/oSKhGtlFKunC5lbExw9ztwQCdLtm8PfP21rV0sJi+vYCLkihWxnYY0bZqmjlxwgY5kuHmySGk2b9ajEkcfDfz6K8tTluaRRzRdaPHi2Fu8gCjerFihtZJ379YFUHr0cLpHipP0KCz33acLSDzzjLP9eOstDQiefjq2gmNAA+I77tAc0m+/Df5+b7+tFRfuv9++vgWSlAS8+aauPHbrrTqp7ayzYi8l6ddfgcsu09zT99+P7eAY0NSnDz7QH5qbbord9yUa9uwBnnsOGDCAwTGRG7RqVVAruU8fHXxzMwbIVKJjj9XKH6+/Dmzf7kwfduzQQP3MM3WSVSwaMkRH/YJdOCQnR3cGTjtNn7cTTjgBePhhrcE7dKjWDbdyBT+7/f030K+fBpVffBE/KwR2767vy7vv6ucq1t6XaBk/XnP4mXtM5B6NGmkVqjPP1IWannhCj4y5cUefKRZUqpUrdc/vvvu08He0XXedBgNLl+pSy7Hq0Uc1sMnI0NezJO+9p18e06cD558fnf75E6u1w3fu1J2LHTt0xOL4453ukbVi9X2Jlt27NT2pe3ddrIeI3OXwYeCaa/SI2Ekn6VLVN9ygE/CjjSkWFLYTT9QarC+/rOusR9Mvv2h6xW23xXZwDAAjRmhg89xzJd8uL0/3qtu00dJUTvrnH+C88wrOx0Lt8IMHNd94/XotLxRvwTGg78uFFxbks5cv7/73JZqee07Lu40e7XRPiMif8uU1DxnQQaO8POC11/Q7rVIlZ/vmxQCZgvLgg7oa1YsvRu8xc3M1qGzUKD5+6OrWBa6+WkeHSzqU9MUXujd9333BT+izS4MGugKZtx8HDmg9YbdO2svL09f4xx/1qMMZZzjdI3s0aKApO8Zovvjhw8CyZe5eOCdadu3S2uEXXwy0bet0b4goEO/ibWXL6vkKFdy1o88AmYLSpo2Oyr3wgo7MRMOrr+rEtvHjgapVo/OYdrv9ds0vfuUV/9eL6OjxMccAl1wS3b4Fsm2b7qh88IHu2X/yCfDDD073qjDvZLWbb9aV5556Crj0Uqd7ZS9vTfdff9Xt848/dIb4jh1O98xZzz6ri/PEw041UTzzLt6Wl6c7+4cOaZDslgEY5iBT0BYvBjp10jxkuysrbNmiqR0pKcDMmc6PpFrpggt0hDMzs/jEsTlzNG/y9dc1H8tt1q3TIGztWh0Jd0sQf+ON+pqJaDD/yivx9ZkJxqRJGjA3aKCl7U4+2ekeRd+OHXrEo08f3VEiIne78EL9zjrtNJ2E36xZ9BcTCZSDzACZQtKnD7BwoX6A7azBOmSIjlQuXw60aGHf4zjhhx90Bu+rr2ow56t7d83HWrtWJ1y50a5dWjrrxx+1/N8ddzgXjHKyWmELFugPzq5dwDvvxP8oelH33adHD5YvL30iLBG5y7336vabnq6/hdHCSXpkCe9Sz2+8Yd9jfPedHs6/9974C44BzYvt3FmXPM7LK7h84UIdQb7jDvcGxwBQu7Z+gV18sS7ffNttmpfshK+/1v54xcIkQjt16QIsWgR07AgMHqzbkFPvTbRt364TiQcPZnBMFIvGjNHf/Ouv1zQppzFAppCkpADnnqs1eu0YoVu/Xis3NGnizAIZ0WAMcOedwOrVWsbN64kndBGU4cMd61rQKlbUQ9i3364TNwcNiu6IbW6uvl49e+piJsZonw4d0pw2t+SwOaF+fd3RGjFCR2P69Il+9RkneL+THn7Y6Z4QUTgqVdIFstavBx54wOneMECmMDz0kFZheOst69u+9FL9kWvd2j2lXuxw0UWaa+VdOGTFCmDqVJ1kVq2as30LVlKSltMaP15zXrt1i84EsWXLgFNP1S/QAQP0cUeMAObP150LtxWbd0L58prCM2GCHpHp3FlfNydEY7W/f//VvPPLLtO5C0QUm844Q1cJffll4KefnO0Lc5ApZCKaQ/v337rS3scflz5iJ6LVL3bs0EUcduwo/P8nn/R/KDiec0nHj9cR2F9/1R/3Tz7RPedYLNX16aea2tC0qaY9HHOM9Y+RkwOMG6cLrtSsqQHgxRdb/zjx5pdfdIds714tfXfRRdF9/Btv1JQsOxcBuOsuTVn688/4rHtNlEj279dBsgoVdIEwuwfLOEmPLPXNN1rNwBigd2/N+/MGvYGC4Nxc/22VKaMBT06Obhh5eVrdYeBAnQQWr4fL9+3TVJITT9Qg+frrdcQvVv30E9C/v9a0/PJLHbW0yu+/66pLv/2mn7WXXorNHQmnbN6sgfH8+cCoUcDYsbrd2cmb8uLvcit3erdu1R2yiy8GJk+2rl0ick56uqbQ3XuvDozYKVCAXNbeh6V45Fs5QASYMUNPgP7o1q0L1Kmjf48/Xv/6Xlb0/9Wr6+H6ESM0QKxYUduP91zSatWAYcM0dxLwX40hlpx+OvDzz7rjdPbZmqMc6TLZhw9rWcHUVP3MfPaZ7jhRaBo2BObOBUaO1Nfyt9+AtDTdMbWKiFZg+fRTfZ/8Bcdt2ugEXCs9+aR+Th56yNp2icg5PXoAQ4fqINnFF2uJ2WjjCDKFbMsWPaQ5daqOBFWooMsRP/WUBsThlvzy1kMcNkwD5S1bCpaijEfxWqJs61YNjH/7TQ+ph1vPeckSHTX+4w+tjzl+vAbJFD4RTXe4+WatF/z550DLlpG1t3ChbqeffaYTT43RnaULL9Ta6R9+qEcVDh/W+1SoAFxxhaYXRVptYssWHT0ePFjL2hFR/NizR78j6tbV6jzly9vzOCzzRpbxrn5z6JAGczk5uhz0CSdEVg/3s880F/fkk/VvPAfHQMEym96SbpUrx0eJsvr1dbSyVy+dNPfAAxpIBevQIV3avEsXLd31xRe6KAmD48gZo+/Jt98CWVnAKadokByKI0eA778Hbr1Vc85POUUnmzZvrou1bN6stb5vvx3IztbHW7BAc5G7d9elwN9/HzjpJE3PSk8P7fPha9w4/f558MHw7k9E7lWzpn6nLFtmf5qFXyISV6eOHTsK2W/gQJEbbxRZulT/DhzodI9i0/DhIklJIhUr6t8RI5zukXVyckSuv14EEBkyROTQodLvs2CByEkn6X2uvlpk1y77+5moNmwQ6dxZX+vRo0WOHAl820OHRGbO1PfzqKP0PhUrigwYIPLuu6G/T9u3izz6qEi9etpWmzYi77wjcvBg8G1s3ChSoYLI0KGhPTYRxZbBg0XKlRNZtsye9gEsEj/xJFMsiBwU72klIppD/OCDWj/7s8+AGjWK3+7gQS0S//TT+nq8+aaOLpK9Dh7UEd5339UJlk8/rZNFp0zRo0Rff63v2Zdf6ohz1aqaPnPRRXqEoGrVyB7/0CFNwXjuOR0lqldP86SHDy99EubIkZou8tdfOnpNRPFp+3ZNtWjeXOe5lLV49hyrWBCRYyZPBq69VvNdZ8zQyZyDB2sgtnatTsZYuRK47jqdlOEviCZ7iGjN0dtv14mjWVlAcrLmkh84oKktAwbozly3bvas8iiii5s89xwwc6Y+xlVX6SqN/uoab9gAHHcccOWVujNFRPHtf//TOudPP61zoKzEAJmIHJWeriOP1asDp52m1Q7atNFJeI0bAxMnalkfir5AE0bLl9eVCq0esSnJihU6IXPyZB1h7ttXl18/5xzNod6yRZfS3r5dJwUmJ0evb0TkDBHggguAWbP0N6NFC+vaZoBMRI6rUKGgmkHRy2O9zF0sK1qZxg11yP/9VyfovPKK/v/kkzVQ/uYbLRXXqpWWlSOixLB5s273bdvqRPAki8pMsIoFETlu3To9XO+tdlKhglbuWLfOyV5R0co0bqhDfvTRwMMP6+qSEyfqqNFVVxXUUV6xQj9H8bwkPREVaNhQ07B++EF3nu3GAJmIoqZBAz0ZU1Ai0OlAjNS2bTo5bv58/bt1q9M9UhUrav76xo2aZuEdNYqXsohEFLxrrtFFRO69V3ee7cSV9IgoqryBmG/lDnKeb/WUV15xrh+BNGyotda//949o9xEFF3G6O9G69b6G/L115Gtv1ASBshEFFVuD8TIvbhzRUTJybpwyM03a4nKq6+253E4SY+IiIiIYkZeHnDWWcDy5TofoUGD8NviJD0iIiIiinlJScBbb2mq1Y03hr9cfYmPYX2TRERERET2Of54YOxYYNo04OOPrW+fATIRERERxZw77gA6ddKl53fssLZtBshEREREFHPKlgXefhvYswe49VZr22aATEREREQxqU0b4IEHdBGh6dOta5cBMhERERHFrAce0NrIw4fraLIVGCATERERUcwqX15TLbZuBW66SUvARboaKANkIiIiIoppnTsDd96pqRY//AA88khk7TFAJiIiIqKYVqkS8PTT+n8R4LXXdBnqSpXCa48BMhERERHFtH/+AS6/HKhQQc9XrAgMGQKsXRteewyQiYiIiCimNWgAVK8O5ORocHz4sJ6vXz+89hggExEREVHM27ZNK1nMn69/I5moV9a6bhEREREROeOzzwr+/8orkbXl+AiyMeZpY8xKY8wfxpipxpiaPtfdb4xZY4xZZYw5z8FuEhEREVGCcDxABpAOoLWItAXwF4D7AcAY0wrAYAAnAegF4FVjTBnHeklERERECcHxAFlEZolIrufsfACNPf8fAOB/InJIRNYCWAOgixN9JCIiIqLE4bYc5KEApnj+3wgaMHtt9FxWjDFmGIBhANC4cWPs2rXLzj4SERERURyLSoBsjJkNwF+hjVEi8rnnNqMA5AJIC7V9EZkAYAIAdOrUSWrXrh1Bb4mIiIgokUUlQBaR7iVdb4y5GsD5ALqJiHgu3gSgic/NGnsuIyIiIiKyjeM5yMaYXgDuAdBfRLJ9rvoCwGBjTAVjTHMALQAscKKPRERERJQ43JCD/DKACgDSjTEAMF9EhotIhjHmIwAroKkXN4nIEQf7SUREREQJwPEAWUSOK+G6VACpUewOERERESU4x1MsiIiIiIjchAEyEREREZEPBshERERERD4YIBMRERER+WCATERERETkI+QA2RhTxRhTxo7OEBERERE5rdQA2RiTZIy53BjzlTHmXwArAWwxxqwwxjxtjAlYpo2IiIiIKNYEM4L8HYBjAdwPoL6INBGRowGcAWA+gCeNMf9nYx+JiIiIiKImmIVCuolIbtELRWQXgE8BfGqMKWd5z4iIiIiIHBBMgLzbGCN+LjcARESqi0iOxf0iIiIiInJEqQGyiFSLRkeIiIiIiNyAZd6IiIgobGnL0pA8PhlJY5OQPD4ZacvSnO4SUcSCSbHIZ4w5GUBXz9kfROR367tEREREsSBtWRqGTR+G7JxsAMD6rPUYNn0YAGBImyFOdo0oIkGPIBtjbgWQBuBoz+l9Y8zNdnWMiIiI3G3UnFH5wbFXdk42Rs0Z5VCPiKwRygjytQBOEZH/AMAY8ySAXwC8ZEfHiIiIyN0yszJDupwoVoSSg2wAHPE5f8RzGRERESWgpjWahnQ5UawIJUB+B8CvxpgxxpixAH4F8LY93SIiIiK3S+2WisrlKhe6rHK5ykjtlupQj4isEXSKhYg8Z4yZC+B0z0VXichSOzpFRERE7uediDdqzihkZmWiaY2mSO2Wygl6FPOMiL81QPzc0JhOAEYBSEZBYC0i0taeroWnU6dOsmjRIqe7QUREREQuZ4xZLCKdil4eyiS9NAB3A1gGIM+qjhEREcWTsWYsAGC0jHa4J0QUrlAC5O0i8oVtPSEiIopRxhSfsz7GjCl0PtgjtkTkvFAC5NHGmIkA5gA45L1QRD6zvFdEREQxxDf45QgyUewLJUC+BsCJAMqhIMVCADBAJiIiIqK4EUqA3FlETrCtJ0REREQxgkcK4lsoAfLPxphWIrLCtt4QERERuRRzzRNHKAHyqQCWGmPWQnOQDVxY5o2IiIjIDsw1TxyhBMi9bOsFERERxaS0ZWlcKITiTqkBsjEmBcB8EVkfhf4QERFRjEhbloZh04chOycbALA+az2GTR8GAAySKaYlBXGbKwEsNsb8zxhztTGmvt2dIiIiIvcbNWdUfnDslZ2TjVFzRjnUIyJrlDqCLCIjAMAYcyKA3gAmGWNqAPgOwNcAfhKRI7b2koiIiFwnMyszpMuJYkUwI8gAABFZKSLPi0gvAOcC+AHAxQB+tatzRERE5F5NazQN6XKiWBFMDvI+6IIgxa6CVrGobnmviIiIyPVSu6UWykEGgMrlKiO1W6qDvSKKXDApFtWi0REiIiKKLd6JeKxiQfEmlDJvRERERIUMaTOEATHFnZACZGNMLQAtAFT0XiYi86zuFBERERGRU4IOkI0x1wG4FUBjAEuhK+v9Ap2wR0REREQUF4KuYgENjjsDWC8i5wBoD2CPHZ0iIiIiInJKKAHyQRE5CADGmAoishLACfZ0i4iIiIjIGaHkIG80xtQEMA1AujFmNwAuP01ERAnFmLFB3W5MKbcTGV1qG2nL0lghgsgBQQfIIjLQ898xxpjvANQAMNOWXhERESW4tGVphWoMr89aj2HThwEAg2Qim4UySe9dALeKyB4R+d5T0eINAENt6x1RBDjyQkR2CmYE2J9gR6BHzRlVaAEOAMjOycaoOaP4XUZks1BSLNqKyB7vGRHZbYxpb32XiCLHkRciinWZWZkhXU5E1gllkl6SZ9QYAGCMqQ0uNEIuVdLICxFRLGhao2lIlxORdUIJkJ8F8Isx5lFjzKMAfgbwlD3dIooMR16IKNaldktF5XKVC11WuVxlpHZLdahHRIkj6ABZRCYDuBDANs/pQhF5z66OEUWCIy9EFOuGtBmCCf0moFmNZjAwaFajGSb0m8A0MaIoCGWSXkcRWQxghc9l54vIl7b0jCgCqd1SC+UgAxx5IaIoOXgQKF8eSArlIK1/Q9oMYUBM5IBQtt43jTGtvWeMMZcBeMj6LhFFjiMvRGQXwRgIxgDG+D9VqgSUKRPw+vz7E5FrhTLJ7mIAnxhjLgfQFcCVAHra0isiC3DkhYgo9rBEJ7lBKAuF/GOMGQxdSS8TQE8ROWBXx4iIiNzIeEZ//dZB/u03oEMH/X9GBtCqVfH7e+ogi10djGEs0UluUWqKhTFmmTHmD2PMHwA+AVAbQHMAv3ouIyIiIgDI9KmUM3Wqc/2IUSzRSW4RzAjy+bb3goiIKB54A+TjjtMAeRQDu1CwRCe5RTCT9DJFZH2gEwAYY4zN/SSiIKQtS0Py+GQkjU1C8vhkpC1Lc7pLRIklMxOoWBG49lpg8eLCI8pUKpboJLcIZgT5O2PMpwA+F5H8Ld0YUx7AGQCuAvAdgEm29JCIgsLcPSIXyMwEmjYFBg4E7r8fmDYNuOUWp3sVM9xUotObK16aMaXczm+uOrleMCPIvQAcAfChMWazMWaFMeYfAKsBXAZgvIhMsrGPRBQE5u4RuYA3QD7hBKBlSw2QKWgs0UluUeoIsogcBPAqgFeNMeUA1AVwQET22Nw3IgoBc/eIXCAzE+jVS/8/cCDw5JPAzp1AnTrO9iuGuK1EZ7gjwMGOQJM7hbTMj4jkiMgWBscUK8aasRibIF9SzN0jctjhw8CWLTqCDGiAfOQIMH26s/0iopBFvg4mkcsYY/JPYzz/fC+L1zmlqd1SUblc5UKXcXltoijatAkQKQiQO3YEmjRhuTeiGBTKSnpEMUGkoPy+d/R4dAJMkvAekuQKVETR4f8Q+hhgaCYw1HvdtcAGAAlyJIsoXjBAJoojbsvdIyIiikWlBsjGmAEAGovIK57zvwI4ynP1PSLyiY39IyIicpWAk7ZSU4EHH0QqRiEX5fTIVW4uUK8e0Ls38P770e0oEYUtmBzkewB84XO+AoDOAM4GMMKGPhEREcWezEzgqKOQi3IFl5UtC/TrB3z5JZCT41zfiCgkwQTI5UVkg8/5H0Vkp2fRkCo29YuIiCi2eGsgFzVwIJCVBcydG/Uu+cMVN4lKF0yAXMv3jIiM9Dl7FIiIiAjYsMF/gNyzJ1C5siuqWXhX3FyftR4CyV9xk0EyUWHBBMi/GmOuL3qhMeYGAAus7xIREVGMEQHWr/cfIFeqpIuHTJsG5OVFvWu+uOImUXCCqWJxO4BpxpjLASzxXNYRmot8gU39IiIiih1ZWcD+/Z4AeV/x6wcOBD77DFiwADj11Kh3z4srbhIFp9QRZBH5V0ROA/AogHUA1gIYC+BeAA/b2jsiIqJYkOkJMP2NIANA3746YS/ENAur84W54iZRcIJeSU9EvgXwI4BmACYBeBrA/9nTLSIiohhSWoBcqxZw9tkaIPssZlQSO/KFueImUXBKDZCNMccbY0YbY1YBeBPADgBni8gpAHbZ3UEiIiLXKy1ABjTNYvVq4M8/g2rSjnzhIW2GYEK/CWhWoxkMDJrVaIYJ/SZwgaFwiACHDzvdC7JJMDnIKwEsBHCxiCwrcl1wu8FERETxLDMTKF8eOProwLcZMAC46SYdRW7VqvQmbcoX5oqbwRGM0f+YMWHe3yvAwjLkasGkWFwIzTueZYx5zxjTzxhTrrQ7ERERJYzMTKBJEyCphJ/VRo2AU04JOg+Z+cJEzglmkt40ERkM4DgAMwEMA7DRGPMOgOo2988WY81YjDVjne4GxSB+dojIr0CLhBQ1cCCweHFBSkYJmC/sLIMxMBijqRT+Tt5qJE8/7ff6/PtTTAplkt5/IvKBiPQDcCKAXwD8YVvPLGaMyT+N8fzzvcwY43QXyaX42SGiUoUSIANaE7kUzBd2MRFgxQr9/wIuCRGPgslBLkZEdgOY4DnFBPGZNewdARwtzAui0vGzQ0Qlys0FNm0KLkA+/njNP546FbjlllJvznxhl9q4Edi7V0v3MUCOS0GPIFPJeOidiChBbd4M5OXh+kcfDe5I08CBwLx5wI4dzvWZIpORoX/79tUVFLdtc7Y/ZDkGyBHgoXciIvLmE7/59dcQkYCnfBdcoEtOf/mlM/2lyHkD5Guu0b8LFzrXF7IFA+QI+H7xeQPkgF+IREQUn4KpgeyrY0eteBHiqnqJxPVHZTMygPr1ge7dtXIJ0yziTlg5yEREROThDZCbNAnu9sboKPKbbwL//QdUqWJb12KJv6OuY/zUIHbF4FNGBnDSSfretW7NADkOOT6CbIx51BjzhzFmqTFmljGmoedyY4x50RizxnN9B6f7SkREVExmJlC7NlC1avD3GTgQOHgQ+Ppr+/oVY4I5KuuK4NhbweKkk/R8ly4aILuhb2QZxwNkAE+LSFsRaQfgSwAPey7vDaCF5zQMwGvOdI+IiKgEGzYEn17h1bUrUKcO0yxiUWYmsH9/4QB5927g77+d7RdZyvEAWUT2+pytgoLVGQcAmCxqPoCaxpgGUe8gERFRSYKtgeyrbFmgXz+dqHf4sD39Int4J+j5BsgA0yzijCtykI0xqQCuBJAF4BzPxY0AbPC52UbPZVv83H8YdJQZjRs3xq5du4J63GBvFwo72qTIWf2+uPl9fqnOSwCAm3fe7HBPiBJDzfXrcbhLF2SH+L1Qrnt3VJs0CXunT0fuOeeUfgcXs+t7xw3ftUX7UHHhQlQGsLthQ8iuXUCDBqhVqRIO/fADsnv1KvX+FBuiEiAbY2YDqO/nqlEi8rmIjAIwyhhzP4CRAEJahUFE8hct6dSpk9SuXTuo+wV7u1DY0SZFzur3xW3vs9/JLXXGFDrvitw9onizdy+QlYWKxx+PiqF+L1x4IVC5MqrPmQNcdJE9/bNRNL533PBdW6wPa9cCDRuiVvPmBZd16ICKf/zh9zPghudAoYtKioWIdBeR1n5Onxe5aRoA77fEJgC+U4Ibey4joiJYcpDIIRs8BzpDTbEAgEqVgF69dNnpvDxLuxUNCfu9461g4atLF2DJEiAnx5k+BeD6cnku5ngOsjGmhc/ZAQBWev7/BYArPdUsTgWQJSLF0iuIiIgcE2oN5KIGDgS2bGH+aqzIyytcwcKrSxetSrJ8uTP98sFFzKzheIAMYJwxZrkx5g8APQHc6rl8BoB/AKwB8CaAGx3qHxERkX+RBsh9++qEPVaziA3r1wPZ2f4DZMAVOzoJO7JvMccDZBG5yJNu0VZE+onIJs/lIiI3icixItJGRBY53VciIqJCMjM1wK2v02zSlqUheXwyksYmIXl8MtKWpZV8/1q1gHPO0QCZgYv7Fa1g4dW8uZbtc0GATNZwPECm6GEuEhGRxTIzgcaNgTJlkLYsDcOmD8P6rPUQCNZnrcew6cNKD5IHDgRWr9ZD9+Ru3gC5VavClxtTsGAIxQUGyHGOuUhERDbyqYE8as4oZOdkF7o6Oycbo+aMKrmNAQP0L9Ms3C8jQ3eIatQofl2XLnr9vn3R7xdZjgFynGMuEhGRjXwC5MysTP83CXB5voYNgVNP1WoWfvDon4v4q2Dh1aWLpsksWRLdPpEtGCATERGF48gRYONGoIlWJG1aw/9EvUCXF3LBBcDixfmT/nj0z4Xy8oA//wwcIHfurH+ZZhEXGCATERGFY+tWIDc3fwS5T4s+fm8W6PJCBg7Uv55RZB79cw9jxuqpzKMwB+6Fea56wWW+p6NfhcEYmHuyYTjiH/NcsdQ0Fec9nDZaQlpUkIhcitt0HCpS4m3G6hl+bxbo8kKOP14nfk2dCtxyi1U9tEywAd+YUm4n/Pxbiu+LfRggu4jfZTvNmELnOWpAFDu4Tce5IgFy2DnIXgMHAk88AezYAdSta0UPXcuqwA6wL7gr1u7jjwOjRuny4tWq+d/pfe454M479ehCvXq29IuigwGyi/j+UHK0iSj2cZuOc0WWmW5aoynWZ60vdrOgcpABDZBTU4Hp04FrrrGql5YKNxiNi5SDjAx9r6tVC3wbbx7ywoXA+edHp19I8PfFJgyQiYiIwpGZqeW+qlcHAKR2S8Ww6cMKlXqrXK4yUrulBtdehw4agE2d6toA2WqRjP5GPbgrqYKFV4cOQFKSTtSLYoBM1uMkPSIionD4lHgDgCFthmBCvwloVqMZDAya1WiGCf0mYEibIcG1Z4xWs5g1C9i/354+U3iOHAFWriw9QK5SBWjdmpUs4gBHkImILMDJMgmoSIAMaJAcdEDszwUXAC++CHzzDXDRRZH1j6zz99/AoUOlB8iA1kP+9FOticxyfDGLAXKQ+ONHRESFZGbqAh9W6toVqFNH0ywSPUB2U4DpXWI62AB54kQNqo87zt5+kW0YIBMRWYiTZRLEf/8BO3cWG0GOWNmyQL9+GiAfPgyUL29t+y4hGKP/KVLVJbQ2vKIw8OQNkFu2LP22Xbro3wULGCDHMAbIIeKPHxERFa1gYamBA4FJk4C5c4GePa1vn0KXkQEkJwNVq5Z+25NOAipV0gD58stt7xrZgwEyUYxhug+RCxSpgRwJ/9v0GOC8XwD8UnBJHG3TxjOCXKjPM2YAV1yhI+dvvgncdpvuIEye7L8Nz+sRlUriwVSw8CpbFujYkRP1YhyrWBAREYXKwgA54eXkAPfdB/TtCzRpAixeDAweDKSkAL/8Uvr97ZabC6xaFXyADGiaxZIl+twoJnEEOU6EksIRT6MQiYzpPvYKdWGPSHMqo5pPSZHLzNR6tw0bWtZkoW06LQ34v//TALGUiYAxvU1v2ABcdhnw00/ADTcAzz+v6QmABsjTpgHbtwNHHeVcH9es0VHtUAPk554Dli3T2sgUcxggE/mIheVPyT5cGpqClpkJNGqkh9Pt0KePtj11qvWVMtykfXstn/bBBxoo+0pJ0b/z5+vERaf4VLAI+jvCd6IeA+SYxAA5zsTUqkRELhPJ0tB+cyq97r0XeOop/f9LLwEjRxa/fzTzKSlyfmogW6pWLeCcczRAHjfOPeXOrOCbdtCoEfDxx8Dxxxe/XadOupPwyy/OB8jGAC1bBr+DnJwM1K2rS04PH25b13jkyj4MkIn84I4GWWbRIuCZZ4DrrgPmzAFmz/YbIFOMycwEOne29zEGDgRuvBFYsSK0w/tutnGj5hejh56fP78gpaKoSpWAdu2cz0POyACaNwcqVw7+Psbo54MT9WIWJ+kREdklJwe49lqgfn3g6aeB7t2B777TST8UsrRlaUgen4yksUlIHp+MtGVpznQkL09zZ+2eoDdggP6dOtXex4mmdu2A338vOB8oOPZKSdEg08ltJpQKFr66dNH77ttnfZ88DMbo0SuR4qfduwvqaP/0k9/b5N+fimGATERkl6eeAv74A3jtNaBmTQ2Q9+7VUWUKSdqyNAybPgzrs9ZDIFiftR7Dpg9zJkj+91+dtGV3gNywoeYfx3qA7BvcNmoU2uc/JQXIztbtyAk5OcBff4UfIItoNQsnfPGFfk4BLaFHIWGATEQlcs2oXaxZsQJ45BHg0kuB/v31snPP1UOv6enO9i0GjZozCtk52YUuy87Jxqg5o6LfmWiWeBs4UAMs72PGmo0bNZfaa/584IQTgr+/d6KeU2kWq1drkBxOgOxNwXEqzWLKFKBZM+D00xkgh4EBMhEF5KpRu1hy5IjmHFetCrz4YsHldevqrP3Zs53rW4zKzPIfIAa63FZ2rqJX1MCB+nfaNPsfy2pff62f999+K7istJSKopo1Axo0cC5A9qlgEbKjjtLcZScC5F27gFmzgEsu0frSv/0GbNkS/X7EMAbIRBSQq0btYskrr+gP+gsvAEcfXfi67t31uv37nelbjGpaw38wGuhyW1k8giwYo9UIjCl+8lZ3uPVW/9cbU3B/t8jNBR54AOjdW4PbxYvDb8sYZxcMycjQetcnnhje/bt0cSZAnjpV34dLL9WSgYDusFDQWMXCIVwumGKBq0btYsW6dcD99+uP0pAhxa/v0UNzk+fNK/jholKldkvFsOnDCu2wVS5XGandUqPfmcxMPTpQs2b0H9vtNm3SKhU//ghcf73uJIY6alxUSgrw2Wea+110h9NuGRnAMceE/xy6dNFUh61bdbJutEyZAhx7bEEN5oYNNc3immui14cYxxFkIgrIVaN2sWLYMB1xev11/7VrTz8dqFCBaRYhGtJmCCb0m4BmNZrBwKBZjWaY0G8ChrTxsxNiN28NZItqE5dYiUBEU3a8pQGvvVZHBt1YieDrr7VKxW+/Ae+/D0yYEHlwDDibhxxuBQsv74IhCxda059gbN8OfPutjh57jzT07q1zH7j0ddA4guwwLhdMbuaqUbtYkZ4OvPoq0KSJ/+srVQLOOIMBchiGtBniTEBclN2LhBSVlKS57DVrAo89ppVQ3n+/oIRXFIS8IMX//Z+e8u/vFcZvXseOQLlyGiB7S99Fw+HDOknPmwcejvbtgTJlNM0iWoudfPqp7lRdemnBZX36AG+9pa/hmWdGpx8xjgEyEQXkDUZGzRmFzKxMNK3RFKndUt0RpLhV167ADTeUfJsePYD77ov+YVeyRmZm9JcPNgZ49FENku+6S2vrfvppaItXxKqKFTXQ/Pnn6D7uX3/paH0kI8hVqgCtW9ueh1x80GwMcPJUAFMLX3bWdwC+s7Uv8YIBMhGVyDWjdrFi4kQd8StJ9+76d84c/3nK5F4HDmgubDRHkH3deacGycOGAeedB3z5ZVQe1u9S6itWABdcAKxdqyPcw4cHTDsJtJR68EdDPfn60Tx6GkkFC19duuhy2iLxtWR4nGOATEQUqU8/Lfi/t+pASdq1A2rX1jQLBsixZeNG/etUgAxoHnL16vrZOeccAFFMO/CaOhW48kodIf3uO00bijfeChah1G32p0sX4M03gTVrgBYtrOmbR7E0zZdfBm6+WfveqhXGenYoRstoXc3znnu0TGHjxpb2Ix4xQA5SyPlXxe7vxaoTRHFl1y7gppsAjAj+PmXKAN26ab4yR5ViSzQXCSnJoEFAtWrAhRciqgFyXh4wZoyme3TpojuHYQRbpc2/KRTYAQVLe7/4ogaA0ZCRARx3nKZ4RMK7YMjChZYHyMVMmaIpHa1aFb+uTx8NkGfO1AojVCJWsSAiisQddwA7d4Z+v+7dtSTWqlXW94ns45YAGQB69dLFILz++sv+xxwwQIPja64Bvv8+eiORTZroMtXRrGQRaQULr5NO0sm5QeQhjzVj83cOQrZxo5bX852c56tVK30duapeUOJyBNmqGsNAwV6u3/wrQNeIb9NGR4T69weee05rJr73XkFpGgTOv6LIsJ40Oeqbb4B33wVGjQJCLezhzUOePTv8RQgo+jIzdcS/USOne6LOOAPAHP1/1676mWzXzr7H+/prPYx/443RP/IRzQVDDh3SlIhBgyJvq2xZrcQRIEA2fl7HMUWOVosEET18/LH+DRQgG6OjyGlpWqEjilVQYhFHkCP16KPAP/8Ab7wBPPOM5mLl5uqX1qhR+iEkslCJq24FcXLdqluxat8+nSh14onAgw+Gfv9jjtFTerr1fSP7ZGZq5RE3BhcVKgBnnw389JO17X7+ecH/58zRlCIn0oJSUnQhnq1b7X+sVau0VJoVI8iApqMsWeK3DrGI5J/GeP75XhZUcAxoekX79iWncfTpo6t4/vhjmE8kccTlCLJXJKOCQY1MLlumQfHVV3smSgA46yzgjz+A224DHn9cc33eey/sflBwrKonHWmuubbhxVHpuDZqlOZF/vBD+DmK3bsDH36oO9UUG6JdAzkUP/6on6mePXUSXc+ekbWXlwc88ggwdizg/W50soau74IhkdQmDoZVFSy8unTRI8zLltlTInDdOuDXX4Fx40q+3bnn6s7djBn6fwoorgNkW+Xl6ehRzZoaJPuqXh14+23N1br+ej20gvud6CXFoYDpPgCwezdQt65O/GrQQIvcF6mTynQfC/z0kx5mHjlSV8YLV/fuutpYNFfZoshkZgInn2xL0xEvANW0qe6wnXcecP75wAcfABdf7PemxSbBFZWVpVUqvvgCuOoq4N3IumaJDh00uItWgFymTHBVaYLhXVFvwQJ7AmRvesUll5R8u6pVdSdnxozisQsVwhSLcL3+OjB/vu4R1qnj/zYDBgDLl+uXldf69dHpH4WlxCVfr7tOS/6ULau1SAMsC+vosq/ffac7b6mpwObNOuObrHXwoJbZatpUjxJF4txz9VB1GKvqpS1LQ/L4ZCSNTULy+GSkLUuLrC9UOhF3jyADQL16wNy5Wjnh0kt1sMbDGJN/8h7K970sPxd25UrglFOAr77S75B33nHmuRRVoYIGl9FYMCQjQ1MVKlSwpr3kZB28sGvBkClTNAhv3rz02/bpA/z5p446U0AcQQ7H5s3A/fdrmSafpTT9OvpoYNo0IOkRPd+mDYOWWJSergtA3HMPsGiRe/NGZ8/WEYK77tJRlnHj9ChGoJ04Ct2jj2p+4jff6GsdiTp19Ac/PR1At6DvlrYsrdAS4Ouz1mPY9GEAwEVd7LRjh+4gWRwgh1zyrDQ1a2p1iwsv1J25rCzg9tsL5bIGbHP6dK2vXLGi5hufdVahqyMe5Y5USoou5W73JLOMDKBtW+vaM0YDWDsC5DVrgMWLgx8R7tNHq+/MnAmMCKE8ZYLhCHI4brlFN87XXw9uooLvbdq31/I4FDv27dPR4xNP1Fy8nj01z3zLFqd7Vlx6uk7SKVcOeOIJ7Xuko5xUYOlS4Mkndd5BgPxOY8aGdlrcD+aH4INjQJf+9gbHXtk52Rg1Z1SYT4yCsmGD/nXzCLJXlSqaHnHRRRoMjR6tI+CBePON+/fXtIJFi4oFx65w2mlaYWLpUvse4+BB4O+/rcs/9urSRVcf3LfP2nY/+kj/lpZe4XX88TrSzHJvJeIIcqimT9fC6KmpWkA8VN9+Czz/PHD3f3r+iy/0CylCnFxmI+/KQz/9pKMqPXoA992no7VXXOF07wqsW6cjCSNH6vmTTtJAzruyUnKyg52LA7m5wNChepj02Wcd7UpmVmZIl5NF3FQDuQSFR3nb6OkRaABcRPESmGOAxQCaaVqFd3Tb8lHucPlO1PPm9Vpt5UrdYbAjQBbR0d6zz7au3SlTdMehSZPgbu8t9/bOO7ozEOlCKHGKAXKobrpJN5q77grv/mXK6H3v9nwpDRigP7rPP6+T+8hdvv1WjxTccUfBF3O7dhokzZrlrgDZm/bRo0fBZWPH6kSdhx8GJk92pl9FpC1Lw6g5o5CZlYmmNZoitVuqI2kB4dXQ9qxYVuel/EsiDiAOHgRq1QKGD9fvgSA0rdEU67OKz2doWsPdgVvMi5EAOa41aqSB4C+/ALfeas9jWF3Bwsu7ot6CBdYFyCtX6hHNF14I7X59+gCvvALMmxd5tZM4xRSLUG3YoLPOrcp9uv9+YNIknRX9ww/htbFpU8HEsGOOKbi8Th3NQXvpJZ0s2Lu3jnq7cXKZG+3fr6kVxx2neadeSUkahHqXCXaL2bOBhg2Bli0LLmvcWH9E3n8f+P135/rm4c2dXZ+1HgLJz51N6AlmFStq3fQQJuqldktF5XKFq5NULlcZqd1CXa2EQpKZqSuixUhOv8joglPew5BHkrQO+gVLIQfuhUzvCKn+HKTuy5Bvzyx0e1eze8GQjAydjG31stB162pqg5V5yFOm6IhwgGolAZ19tk5AZJpFQBxBDtXw4XoowyqPPw707avldM46S0eXH3205JmzvkXSjz9eS3l5A9s2bTRH+pxzdD32JJ99oL599fD7X39ZV7omnj3wgKYtfP99sVJp6NlT69cuW2btRI5w5eXphJrzzy+eF3/ffbpTd999OinDQSXlzjo1uazUYCAvT7fN5ct15nf9+gAsnqzUvbu+P1u35rdfEu9r5YaR+ITirWDhxCIZISg15W7aNA30fRWpievqlLuUFM273bxZBwWslpGhv5F2TALs0sXa4P6jj7RsW6ivQ+XKGifMnAmMH29df+IIA+Rg+Bbxf+IJ69s//XQd3bvzTuDpp/UD+/77BbU2t2/Xsj1z52oZrz//RH5AfMIJwA03AHft1/PTpgV+nD599O+MGQyQS6HBTx0Ao4EzvwXwrZ9bjQFOngpgajS75t9vvwE7dxYsX+yrZk1d1OKuuzRlxEExmTv7+uu6AMM77wQVvIbFN6+9tMo4HkPaDGFAHG1uL/EW44JZchkAZP58/c8vv+gkRKtlZNhTqxjQAHnKlKB3hku0fLlO+nv11fDu36ePDqitWRPenKo4xxSLYLxUkG+ImjUtabLYcsHVqukoH6Af+nbtCq47+midnfrqq57g2Of+06drYB2M5s318PtXX1nyHMhFvPnH/gJkQHPnmzbVCYcOCpQj69rc2cxM4N57NYC96ir7HqddO6B27bDqIVMUxUiAXGI9d+9p794Sr3ci5a7o8sqBTmjfXo+y2lEPOTsb+Ocf6/OPvbwTC61YHGjKFD1KfOGF4d2/d2/9G+KRxbFmbP6cinjGALk0mZnAQw853Qvr9O2rKQP79zvdE1cSGQ25PUt3QL47q3AOn4zGGOjYvchoyG17IBWegGTfU+x2Uc/hS0/X9JpAIxIVK2rqzuLF0e1XETGVOyuiKVUiuvNq52H1pCStqz57trvy2qnAoUNa2jEGAuSgVKvmdA/CV768rlBrRx7yypW6DdoVILdvr5P1I81DFtEA+ZxzdHGYcBx3nOZZl5KHXHQxmRIXmYkjTLEozU032fKDVeJywcHcP8BywaXnRVYFMAqo5myZKtf6+WfNxxoxovRZxj176m1//LFw5Yhoy87WPnjLuwUyZIiWJ/sjOt3y24VYyp1NS9ORlRdeiE6JvB49dLnYlSsLT7Qkd9i0Sf/GS4Ac61JS9OjuoUPWrXYH2FfBwqtKFZ0fFGmAvHSpzj+6++7I2unTB3jjDf0dKTrXxkOKxEBRK+nnMI4gl+bLL/3WjqQ4dOCALuLStKkuBlGaM8/UkYxZs+zvW0l+/FEXriktSC9TRlfWc9iQNkOw7rZ1yBudh3W3rXNucl7RNKeiJ28Jv1tv9Xt9/v2t4k2PYZqFO7HEm7ucdpp+7/32m7XtZmToQkt25uR6V9SLZPBtyhSttBFueoVXnz5aanLu3MjaiUMcQS5N+/b6A3mXHgJ2fJnNAIIZic7f67t4uY6Ubtzo+tnYUTV6tFb4SE8P7vBjlSpanmvWLJ1cGWWFP4tjgN6/Avg1+Ab27mXtbTdp3lzLNM6erQu7kLswQHYX3wVDTj3VunYzMnTye7ly1rVZVJcuwJtv6uS4cErJedMrunePvOTgmWfqyPGMGQUT+QkAR5BLN2GC7qXFkz59tDyOC+riusavv2r6wfXXB57o5k+PHu5ddro0Dq8G57QSJzJdfLHWLD18OLqTmHr00Eo1vpVzyB28AXLjxs72g1SDBkCzZtbnIWdk2Jde4eWdqBdumsWiRVqC9NJL/V4dUr5wxYpa4m/mTM5/KCLOIj+L+G5wnToBcNEym1bwzlydMUNnz5OuZtiwYegjwT176mIvUVx2utBn8d9/dYJGaqrWbUaQn8VLLwWe/Upzre0qXRardu/WJeCHD7d3FMmf7t01H3DBAmvrrVPkMjO1ohCX5c0XTFm2ovmrlkpJ0RQzq/z3H7B2raba2alVKx21XbBA54aEasoU/W664AK/V4f8mvfpo+mkf/2lo+cEgCPIxeXkAMOGOd0Le9WvrzOAWe6twIoVesirRo3Q7udddtpbZi3a5szRv6FOEkxN1cktzK8v7qOPdOTYzrJugZxzjqY9MQ/ZfWKkxFs0BVWSzU4pKZoquGGDNe15yqjaPoJctqz+BoczgpyXp99R551nWdnZQoNmlI8BclHPPqt1iONd377A/Pm6uATpiEGvXqHfz7vs9KxZzhyeSk8HatUKvaj9ccfpAjMTJuioARV49139gWzfPvqPXaeOvpcMkN2HAbL7+OYhW8HuCha+unTRCYaHD4d2v/nzdYcgQHpFWJKTtXIOA+RCGCD7+vtvYOzYyGeFxoK+fXVP9JtvnO6Jc3y/mJ57Lvx2evQAtm3TZaejSUQD5HPP1QoVoXr4YV1udtSoUm/q9sLwlvVv9Wr9sb3ySucmsPbooX3Yty+qD5u2LA3J45ORNDYJyeOTkbYsLaqP72oiMRkgGzM27FNMOPlkTXmxMkAuXx449lhr2itJ5856FC/U340pU7SsXf/+pd40pG26Tx9g3jyukeCDAbKXiOZjlisHvPii072xX6dOwFFHJXaaRarP4hSRHKrypjdEu9zbqlV6eDHcGsxHH63LT3/yiU5SLMLtheGD6V/IfXzvPT0qEORyz7bo3l0n6c2bF7WHTFuWhmHTh2F91noIBOuz1mPY9GEMkr327NH81BgLkONe+fL6W2ZlgHziidGZmB/ORL0jR7RWep8+pVYgCnmb7tNHB42+/Tb4/sQ5TtLz+uADHY17+WWgUSOne2O/pCTNO/ryS93owhmBjGVLlwKPPw7gwcjbatxYJ12kp2vAGS3ew/CRLFJy5526hPk992gdTJ+A0jd/0I2TUC3vX14eMHmyBqgNG0bavfCdfrqOis2erUd6omDUnFHIzskudFl2TjZGzRnlzkVcoi3GSryFVPbTRdt0WE47DXj+ea3lG+kEyoyM6E2OTU7W+SsLF+rgXDB+/FErJgWRXhHyNn3GGUDVqppmEcTodCLgCDIA7NoF3H47cMopOnM9jpQ0ynbp5Mn63P2MHsa1nBzNOY60fqSvnj11xO/AAevaLE16utbNPeaY8NuoWlXrP8+bx/yzH34A1q/X9AqLhDUKX7Ei0LVrVCd+ZmZlhnR5womxADmhpKTod/qSJZG1s3+/bv/RyD8GdDDCu2BIsKZM0eoX559f6k1D3qbLl9fBAZZ7y8cRZECXaty1S0ds4mwktcRZxHv26B7sV18lVkmpceN0BHnqVGCgRbWgo73sdE6O1su97LLI27r+eh2Bue8+nagYZ9tA0CZP1h2GgQMtazLsWfzduwP33qujRQ0aWNafQJrWaIr1Wev9Xk5wJEB2vIRarPCdqBfJ79iKFfrX5gC5cH53Fz35yfke4zcPvB6Ae4Cqz5R6lCCsbbpPH2DaNH0torWj4GIcQf7+e+Dtt/VQc9u2TvcmumrW1MO5iTRyuGwZ8OijwODBAWtIFhXUKGC0l51esEAncVkRjJcrp+kmy5drDq7NXDkZLDtbc/sGDdIRGqd5F6vxlvGzWWq3VFQuV/h5Vy5XGandUgPcI8FkZurEqKOOitpDOl5CLVbUq6erUEaahxzNChZRENY2zXJvhSR2gHzokJa6at5cDzMnoj59dDR10yane2K/3FxNrahZE3jppaDvFtQPVZUqurMRrQB59mw9RHfuuQAsmFB38cV6uO+hh2xNE3HtZLBp03SHw8L0ioi0a6cpQFFKsxjSZggm9JuAZjWawcCgWY1mmNBvAvOPvTIzgSZNdO4GuU9KigbIkew0ZGRoelMkKWshEBkN2X4TBGMgT1bS8yWdrt8EqfpM0O2HtU03bgy0acMA2SOxt/Zx47QSwGuvuWPUyAneSUCJsEE8/TSweLFOSqtb1/r2e/bUZae3brW+7aLS03X2du3aACwYbTIGePJJrYrx8su2dbukiSOOmjxZl60980xn++GVlAR066Y7QlEaKRzSZgjW3bYOeaPzsO62dQyOfTlY4s2VR1zcJiUF2Ly5IBUmHN4KFtFMMatbVwPy0vKQc3KATz8NefJcWNt0nz6aKrh3b0iP5SZWlf1M3AB55Uo9rHzZZboiTaI66ST94o/3AHnFCmDMGB0pvfhiex6jZ0/9a/ciD3v3arF472F4q5x9tn45Pv645uTbwJWTwTZv1h2OK65w1whh9+7at5Urne4JORQgu/aIi81C3imwYsGQjAxn0iuCmag3Z45+J1u5OEggvXvr0dYYW6zIjrKkLvo1iCIRrVZRubJOTkpkxmhQlJ6uKSfx6MgRYOhQoFo14JVX7Hsc77LTdqdZzJ2rz8mOyYBPPAFkZenRFRsEmiDi6GSwtDQt8XbFFc71wR/v+1tCmoXbF3CJCzk5uqPiQIDs2iMuNgprp6BtW130KNwAee9eXZ3OqQB5wwadkBvIlClAjRrRGcw77TStsRxjg2a+R0u9AXKkOftxGSALxkAwRoM/f6ekJJ2ct2cPUL++39vkt5EI+vbVIvg//OB0T+zx/PNayu6ll3RxDLskJemoX3q6vYfF09N1586OyiNt22oe7osvRna4MgBXTgZ7910dgTr+eOf64E9ysq7oVWQkx+0LuMSdzZt1B8qBANnqIy6x8NkJa6egXDkNNMMNkKNUwcIv74IhCxf6v/7QIa24dMEFOlHUbuXK6dHQKJZ7c+uOPsu8OcwVS3qec45ueF99Zf1h+xBZXrx+1SrgwQf1y2XwYGvaLEnPnsD//qcVIdq0secxZs/WXFmLviyLfwabA7gfaPZOsdv6Lz1UoLTSQ94cuFFzRiEzKxNNazRFardUZ/NdMzJ0HoIbde+uixjl5OgPF9y/gEvccbAGstXl92Kh8kXYOwUpKcAzz+gk40qVQntQJytYtG+vec8LFvjPMU5P16N60Uiv8OrTR1dY/eMPXc7bBrFQxjAuA2TjGfkNZjWhgG14fnjc/3VigSpVNEj+6quop5wEGrEIdkPJH+Uvcvtipk3zm19a0KpFAYbvstN2BMgbN2pO6vXXW992lAxpM8RVE8AMxgAjtgEjXLCzWlSPHsAbb+joUiLVKo+StGVppe+seQPkJk2i3r/UbqkYNn1YoRFVx4+42CzsnYKUFM2dXbxYV4ULRUaGBtXNm4d2PytUrgy0bh04D3nKFKBWLZ20Gy29eunfGTNsC5BjYUc/LgPkWFBa8B71D0zfvsDNNwOrVwMtWkTnMVE88HXrhhI077LTs2ZpbW2refNRbRjpL/SZ3LVLD++fdpruOJXCFUdC4tE552jaV3o6A2QPq74jvLmu3uDTm+sKoHCQ7GCA7MojLjYLe6fg1FP17y+/hBcgt2zp3CTdLl20DruIbu9eBw8Cn38OXHKJ1tmPlgYNdGR75kzg/vuj97guwwCZVJ8+GiDPmAHceqvTvQlawKMFhw7pF17VqsBvvwUs3WPLkQLvqF84h/pKk56uhfHtSt/wql1bvxjvvVcnBZ59tr2P5wD5ooMe0vziC6Bfv2LXu2JnrXZtoGNHTatJ1FrtsOdwbEm5rsUC5Dp19EibA9x2xMVuYe8UHH207tSHk4eckZFfU94RXboAb74JrFlTeIBq5kytzx7N9AqvPn10svbu3TqCnYDicpIeheGYY7QGZBCjhTHhpZeAtWuBZ5+N/tLJPXvqnv+PP1rbbl6eBkrduxceZbDLzTfriPi990ZtskZUTZ6sK6N5Dye6VffuWtZv3z6ne+IYO2aoB53r6mAN5EQVdk3ucBYM2bNHF8pycgU970S9omkWU6bod9Q550S/T717a7WkKC1W5EYMkCMQCzOCQ9Knj1b32L/f6Z5EZscO4LHH9PnYUQqtNGedpROqrP5iWbYM2L49es+pUiXgkUf0S/vTT6PzmNGye7eOHF9+ef7kN9fq0UNzK7//3umexJWgSw5u2MAAOVakpOhCTevWBX8fJytYeLVqpbnIvgHyf/8B06cDF10ElHXgYP8pp+jIcYyVe7MSA+QIRLx6mdv07QscPqxFyWPZ2LEa5D/9tDOPX6WK5sBZXQ/ZxvzjgK68Un84HnhAKynEiylT9LNeZGlpV+70nnaaLoEbY4X73S7okoMcQY4d4SwY4mQFC6+yZTWVyjdA/uorIDvbmfQKb5/OOw/4+ms9epmAGCBTgTPO0MU0YnmPceVKLdk1bJjulTulZ0/g99+tXXY6PV3zqhs1sq5NlFI3vGxZ/QFZvVoniQSoLR5zdcMnT9YfxPbtC13syp3eihWBrl0ZIFtsSJshmNBvAprVaAYDg2Y1mmFCvwmFD+dnZemJAXJsaNNGBygCBMh+6+1mZOjobbNmUehgCbp00fkyhw/r+Y8+0nUaunZ1rk+9ewPbtmm/EhADZCpQvrwezp0xI3ZzTu+5R78gx4xxth/eNAirgpqDB4F585xJGYk3q1frD+hVV0Unl9sKPXroD/nmzU73JK6Umuu6YYP+ZYAcG8qWLbZgSGlHhdJfeEEHU5xeZr5LF51cvmyZzjf46ivg4oujP4fGl2+5twTEKhZUWN++wGef2Vog3DZz5mjO1rhx9q6YF4z27XXme3o68H//F3l7P/+sQbINAXJQdcN379altMuV09GEatUKtxFLdcMnT9YfwyExVBnAm1YzZ477lsSOZw4uEkJhSkkBnnpK0xMqVy693m7Dhs6mV3j5TtRbtUq/7x1IryhesnMM8HAe8HDxUp6RLhzldhxBpsJ699a/sbbHeOSI1h1u1swdZeqSkjSYnTXLmtH49HQdHTnrrMjbCketWkBamlYGGTnSmT5YIS8PeO89DTgbNnS6N8E7+WSgbl2mWUQbA+TY410wZNGi0m+7ezewZYs7AuRmzbRixYIFOkeiUSPWPncYR5CpsAYNgA4d9PBOLBUInzxZc37/9z/N2XQDK5edTk/XQvhFRm6j6owzgIce0kmQ552nFSBizQ8/AOvXA48/7nRPQpOUpCtppacXX0yA7JOZqUdN6td3uicULN8FQ848s+TbumGCnpcxOor83XcatN90k6NpH/mjv7/+qq9pWlrQ3/nxsnAUR5CpuL599ctl166AN0lblobk8clIGpuE5PHJSFuWFsUO+jFqlG7El1zibD98+S47HYmdO4ElS9yRf/zggzqqMWKEjibHmnff1cVjLrjA6Z6Ernt3/eH880/bHsLvJKZElpmptcCdzk+loBgzFuaoV2AwBua+g3re5zQGwBjv7cxYmK5z9LZ9Fxa6nWO6dNEd+MOHnateUVSnTnr0KtaOKlvANSPIxpg7ATwD4CgR2WG0ntILAPoAyAZwtYgscbKPCaNPH+DRR4FvvgEuu6zY1UEv0RpNW7ZorV43jaw1bqxVJyJddvrbb3XU0A0BctmyOpJw8smawztvXlg1Oh1ZpS47W5dzHTRIZ63HGm8e8uzZllZosWOVOl+uWJEwXCzxRtHUubP+TU4uyEl2WpkyOlnv6681ldHJSYMewe7ElJYjDZScJ+2KANkY0wRATwC+Sxj1BtDCczoFwGuev2S3zp11j/Grr/wGyEEv0RpNl15aUAPTTXr21GWnDx4MP/UjPR2oXr3gy9Npycn6nC67THekxgb3ZWV3IFaqadO0PvZVV9n3GHZKTgaOO04/D7fcYlmzpU5iClGgWtFRfa+tkplZ+mF6ch15rZ4e5VqzRpefDqRbN/1O+PVXANFJDcgvh1lkeyhk3bqARy0Ktpoo7nD27g28/77mdZ+SOGGYKwJkAM8DuAfA5z6XDQAwWfRbdL4xpqYxpoGIbHGkh4mkTBndIGbM8LvHGPQSrdE0bpxzj12Snj2BF17QZafDWeBDRAOic85xZjWlQAYP1iMMjz0W9POyOhAL2bvv6kQYJ+uKRqp7d/2hyslx7QqARQPfmB1BPnIE2LiRI8ixyHfBkJIC5IwMPWJKJTvvPD06O2OGqwLkSKpkBLMz5PgvrjFmAIBNIvJ7kZGHRgA2+Jzf6LmsWIBsjBkGYBgANG7c2OfyyPcGd5WQhxsNTj1++TPPRNX33sPe2bORW2TkslG1Rti4b2Ox+zSq1siy/gbTTpnffy+4ffXqJeZMW/F4YWnTBrXKlcPBL77AgQ4dQr570j//oOa6dfhvxAgcsvmzEPJrMGYMasyb5znKcH1YbVj9ugdqz2zejJqzZ+Pg7bfjwJ49lj6mnerUeanIJfUB3AWULzzJsLRDiTt33hzS49qxPUTrvbaK2bQJtY4cwX916ti+7ZG1djVsiFpVquDQd98hO0AAbHbtQq1t25DdvDkOFnl/7fxs1fGMIIe6Tebf3/OdsDOavwfGoFqnTjDTp2NvCFWi7P49sOJ9KqmNqATIxpjZ0G/2okYBeACaXhE2EZkAYAIAdOrUSTYWj93CVrt2besai6XHv+gi4IYbUP2HH3Tv0ce4HuMK5SADukTruB7jLOtvqe2IAI88AuDs4G4f6eOF3zBw+umoNG8eKoXzGB99BACocsEFqGLzZyHk16B2ba3S4VOKKNQ2gr190DlnxQJKXw8DzwLyjLPbtBPsel+cbNP278aVKwEAVU480fZtj6xV+6ijgFNPRcXffkPFQO/d8uUAgMqdO6NykdtE43fXtb9Zgdrv3x946CHUzskB6tULqQ1rvr+Ljxhb8RqU1EZUAmQR8XsM1hjTBkBzAN7R48YAlhhjugDYBKCJz80bey4L4vFKHnaP2UN+0VSrlgY+M2boYXQf3jzjUXNGITMrE01rNEVqt9To5h9/8QUwdy68AbKr9ewJPPCALtkZ5BdLvvR0PcTbooU9fYtU5876+bjvoNM9iWuFvtO6dNFVL3/8sdT7xUu5JUewBnJsS0kBnngC+O8/XV21KDeVeIsFvXtrmc9vvgGuvNLp3kSFoykWIrIMQP6SZ8aYdQA6eapYfAFgpDHmf9DJeVnMP46yvn21FvLmzcUWVRjSZohzE/IOHwbuvlsrRNhX8co63gB59uzQVm87ckQrWFx0kbuqcxR1993AfY/q/1etAk44wbaHCivnbMkSoGPH/BUDY1737rpS2N69OnmT7OENkJs0Kfl25E4pKfodunAhcPbZxa/PyNDtxyctk0rQvr0O8MycGXaAHG7OsFM7+m4u7jgDwD8A1gB4E8CNznYnAfXtq39nznS2H0W99hqwejXwzDNO9yQ43mWnQ62HvGgRsGdPeJP7osl3tvXllwOHDjnXF38mT9YR13jRvbv+8M+b53RP4ltmJlCzJndCYpXvgiH+ZGRouUQ3Dz64SVKSjiJ/842uVJgAHJ+k50tEkn3+LwBucq43hNatde/6q6+Aa691ujdq1y4tK9ajh2dZ7IVO96h0RZedDvYLOT1d/3brZl/ffFiyl75kiS4m8vTTkbdlhZwc4IMPNH/uE6c7Y5HTTgMqVdLPx/nnO92b+LVhA9MrYlnt2no06+ef/V+fkaHfCxS83r2BSZO0LN7ppzvWjaBK5ZXahlfgUW03jyCT04zRUeT0dPeMCj72mI6qPvNMbO359+gBbN2aPzEkKLNn6+jzUUfZ1y+rjRih7403uHfa118D27fHV85cxYpaqm72bKd7Et+4SEjsS0kB5s/XgQlf27frifnHoenRQ8u+Jsiqeq4aQSYX6ttXF4X48ceojWQGtGYN8PLLOprdtq2zfQmVdxW89HSgTZvSb79/v4583H67vf1CcHlhQU9szc4Gvv9eA9I//nA+uJ88WfvQqxeAOFqIs3t34J57/M4PIItkZhaq0EIxKCVFRzzXrCk80ZkT9MLjnbw/cyaQmupMH/bvz59PIif+L7/aDBo10vk+PXtqrFLKb4/3iGlJyxUxQKaSnXsuUKGCplk4HSDfe6/mkj76qLP9CEeTJgXLTt9xR+m3nzdP0wPcnn9cVOXKwIcfaqWFoUO12ohTI/27d+vjjxjh2kU1wubd4Zo9O75Gx91i/35N5+IIcmzz7uD88ovrAmS3VpgJOn2hhO91S1f7y8sr+P855wA//QStEAxdXXTYMC1F27Kl5b81TLGgklWpojOAnT6kMm8e8NlnwH33AfX9ldSOAT176ujqwSBKoqWn647JGWfY3y+rtW2rOchffgm88opz/ZgyRSuexGMA2batLgfPNAt7bPCsUcUAOba1aqWTLItO1MvIAGrU4NEXu335JeCzoFfQNm3Skf/LLy9cGnX37sJHVWfO1PM2TbbkCDKVrk8f4NZbgb//LnnZTrvk5emoa+PGAUdf3bo3XkiPHsEvOz17tuaZVqoUnb5ZzNyyC8AY4OadwM2B35vSVoCLZClRTJ6sE03btw+/DbdKStIjOrNnhzbxMwYEvaiAnZ8d1kCOD0lJujSyvwD5pJMc2W7cvk5DfvpCSY+/ezewdq3uSPo5mfXXaBv9+nnuoG3ixBP1aKq/04YNeoR11qyCuTr16unEwPc8zSxdqn+fis7vPQNkKl3fvhogf/UVcMstYTcTShBb/MfPs6FV0eoIEf34OeWss/RQf3p6oQC52Bfili36BXHFFU70Mj6sXq0/ik89FVfBYyE9eugo+YoVzKW0GgPk+JGSopO79+0DqlXTHcqMDODCC53uWeyqVUtPHTr4v977+z1/PrBhA2TQID2/ClorP1jbtgHvvRcwZcPugTEGyFS6Y4/VcjkzZkQUINvB7XvjhVStqqVxZs2CeeqpYleP8eR8/R88O8zePNMYJt+kaH7YTTfpBMsgRfzFN3myjh6FsjCLCwWVD9i6dQn393LB5z9Eji4qkJmps/UbNIi8LXJWSooehVy4UOfU/PsvsHMndyqj4ZRT9BSjGCBTcPr0AV59NfCynSEI6Yfvscd0ect584CuXWMjlaIknlX1ZOvW/NyqYkH8lVdqbtXJJzvVSwCA8TPyOqZIoCZFyycV1bMncOedwLPPaqCcf8jNRnl5wHvv6Q4GcwxtFdlRocKcOirkdyc6M1NnxZflT2TM8wZov/yiAbILJuglmqDSNkq6f5GKE9EaGOMkPQpO375aC3nOnOg95tatwLhxeiisa9foPa6devbUv4EmV4nodd26FV6hzgEiUuopKKmpmgd8zTValsxuP/wArF8fF5PzDMboj4tI4NNLL+mNe/bUHVif6/LvT4UYY/JPYzz/fC/7bvJkplfEi1q1tMKBd8EQBsgUJO4eU3C6dtUUgRkz8lcfsj194aGHtArBk0/a074TfJed9nf4f8UKzUGOg/SKfBUqaOm3Dh00aJ01y97g/913Ndfwggvseww3GTlSj+pcd53We/7yy4DLI9s1AS6S0V8njgr57tz5/R479lgGyPEkJQWYNq0g/7hWrdithkRRwxFkCk758kCPHtjwxhsljrz4Oywflt9/B956S3/8jzvOmjbdIClJJ+ilpxdf3QkoWIEungJkQHPYX3hBj0A8+6x9j5OdDXz8MTBokNZkThTXXKM7Ib/8okcfdu50ukexKy9PZ9Q3aeJ0T8gqKSla1/qvvxytYEGxhSPIFLy+fdFk6lTIH38AbdrYN4IsAtx1l+7lP/SQtW27Qc+eWn0gI6P4BKv0dC1oH4+jV9deq0s/P/CAFnzv1Mn6x5g2TRd5iIP0ipBdcomOJF90kdYuL2G5b0cnwLndtm26SE88boOJynfBkIwM3VYo6mLt+4MBMgWvd2/9+9VXwS2XHK6ZMzUP94UXNEiON97R4VmzCgfIhw/rQiJXXeVMv+xmDPDmm8CCBVoAfskSTdux0rvvAs2axU/OukdoPyz3A8sBNHjDru7EN5Z4iz8nngjUrAlMnao1fJl/TEFggEzBa9hQc2i/+kpXtLNDTo5WPWjRAhg+3J7HcFqTJvqFXXTZ6fnzdZJVHKRXBFWerFq1Eu7vFcJI56ZNumM1apTjExwphjFAjj/eBUO++krPM0COqpgqx+qDATKFpm9f4PHHdS/cDm++CaxcqYfKy5e35zHcoGdPfa6+y06np2vt1XPOca5fbvPaa8Dxxwd32w8+0PzROFpgJaIflt9+089ZmTLA8otKrJdMPhggx6eUFOCbb/T/DJApCAyQKTR9+mhtYu8XTQiCGlX0ClCBIJYXPiikZ0/gxReBn34quCw9HejSBahRw7l+WSSkupc7d+rKd3/9lX8yH+sPmNx4o+dG2h7attWAueipTh1Nr0hJ0aMPpEd75s3TSaFnnRXWNmuJffs0lSZWJkVt2KBHN+JgOyQfKSn6t04d4Oijne0LxQQGyBSaLl30C2bGDADHOt2b2OVddnrWLACVUREHdKWnUaOc7ln01amjp1NPLbjMm3O7cSPw11+Qc8/V88sALFtWcnsBArG42bkKRcuWWhe6WzddJAF3Wtp8SDu9Advwcsn7kpmpo8exEtBTvqA+jzt3BkzBct1nkYJmycJWRTBRj0JTpozWWp05EwZ5Id01f9GC3FydiHfRRRokArp3/9ZbOtpUwqIIcbPwgc+y0wCQjLWaHhAH+ceWatSIKSeROuYYDZLdvqrgO+8AixY53YuCAJmIYoZlC1v54Agyha5vXyAtDQ2xCZsQRq3Q5s31MGadOsDNN2v5r1atrO+nSwSuQHC2z/9bYTDGAGd+C+Bbv7d2aileN4h0qVKg+HKlCaVxY023qPeanp82zZKFVPLfl+x7gEmTtMb1339r7fI779SKLJUqFdxBRBfCWbYMWL4cWLYM5t3metXQoZ4baZsYOFCr5bRurX9btIjO0s+ZmfaUICTbWb2kMSU2BsgUUMmlpcYU/K+0Vbc+agVMnAjAU4uyZUv9Ie3fX1dZI3KZtGVpGDVnFDKzMtG0RlOkdkvFkDZ+Vj6MJb55lxdfrDnb/lZzDEfTpsCOHZqC9eSTGnyXKVP8dsboSHbDhsB55+ll73q+P1atApYvh1x0kZ6fBg3kQxTRYfIDB4Dt2zmCTEQMkCkKLrnEsyqVJ0B2arKQw4qNahw5AtSrpyNk33+vdZ9vuaXY/WKtuHqsS1uWhmHThyE7JxsAsD5rPYZNHwYAsR8ke3XtqtU+/vsPGDYs9Pv/8w/w3HMAjtLzp54K3H23thtu7q53wqWTNmzQvwyQiRIeA2Qqld/DVU88oSuibd4MNGigl+3fD3z0keYS//xzQa7wzJmaW1v2saj1OSaUKaMVBqZM0fPduzvbHwIAjJozKj849srOycaoOaPiJ0CeMUNHkW+4Qbdb33rcwWjRwjNC7JlUOn26ZV0r9TD5hg3AySdrbvXPPxcrBxnRYXKWeCMiD07So/D06aN/Z8zQldGGDdNA+dprdc37Z54puG2vXv4Pt5KWewP0kHPLls72hQAAmVmZIV0ekypV0lXFBg3SXOFHHtH8YH9EdInwbt0KLrvrLmDt2uj0tagmTYC33wYWLwbuv9/athkgE5EHR5ApoKBK5lx3XfHLVq4E7rqLJXM8gnodN29m6SGXaFqjKdZnrfd7eVwpX14XV6lcGRg9WivIPPVUQYpETg7wv/8BTz+tk+oaNQJwpl735JOOdRuA5jjfeKOmeXTvDvTubU27mZn6/Bs1sqY9ohjF1L4EGkE2xuSfxnj++V7mr4YeESWe1G6pqFyucqHLKperjNRuqQ71yEZly+po7E036VGfG28EsrI08DzmGODKK7X84KRJmnfsJs88o9UtrrpKK2NYITNTj+Z4y08SUcJKmBHkcGrgJTqWzLEGX0frRGNUw5tnHHdVLBDE0YzXX9eTr4wM4OqrgauvdtfRjEqVdIS7UycN5L/5JuBRmKCxBjIluGB+p0pc4j6OJEyATEQUrCFthsRFQBz3WrUCxo/XyYZPPw3ce29k7WVm6hLdRJTwGCC7iB1LJRI5yaoR39JGNRJlRCNScXk04/rrgdmzgQcfBM4+O/x2RDRAHjDAsq4RkX+xEO8kTA5yLLBjqUQiorhmDDBhgk6su+yy8NvZvh04dIgpFkRREAvxDkeQichyHPGlqKpZUytynHlm+G2wxBsR+WCATBQlLJtDFLzwtpeHwn9ABshE5IMBMkUdA0Uist2qVcAJJwR/ey4zTUQ+GCBT3HFb8j/TDchKbvt8Wy3i7WXTJl2KevA0YP58oEKF4B44M1MXTaldO4TeElG8YoBMUROt+oqxHBwQlYaf71I0agS88w7Qv7+WfRs/Prj7eWsgc9GomBdrRynjfac3VjFAplLF2pcNEUWX674j+vUDbrkFeOEFmBdqBXWXMZ+0BtAaKOG5hFsej6gkDH7diQEyEVERacvS4nIlvYTy5JPA998DvzvdEYoWprORlRggU0D8srFPIh5Si5XnnLYsDcOmD0N2TjYAYH3WegybPgwA4iZIjtYCLoCD3xMVK+pS1C2nAAAk90GgTBn/tz10SG//yCPAQ8UrYbhuhJyIbMcAmcgBbggEo83q5xxMwB3O446aMyo/OPbKzsnGqDmj4iZAThgnnljw/3HjgFGj/N9u40b9ywoWRMX4+64F3DnAYSUGyEQUk+z6Ms7Mygzp8liS0EeFRo8GzjkHOO204texBjJRQPEW+AaLS00TEfloWsN/kBTocooRTZsCl18O7NlT/DoGyERUBANkcpQxptBpjOdf0cuJoiW1Wyoql6tc6LLK5SojtVuqQz0iS3z4odZIHjYMKDoi5g2QGzeOfr+IyJUYIJOjRCSoE1G0DGkzBBP6TUCzGs1gYNCsRjNM6DeB+cex7pRTgEcfBT7+GJg4sfB1mZlA/frBLypCRHGPOchEREUMaTPE9QFxIpWis6wCyj33AHPmALfeCpx+OtCqlV6emQk0aWJBT4koXnAEmYgoxnhL0a3PWg+B5JeiS1uW5nTXbGHZUaakJGDyZKBqVWDwYODAAb3cu4oeEZEHA2QiohhTUik6KkWDBsCkScCyZcDdd2s+MgNkIiqCKRZERDEmnkvRRUWfPsDttwPPPw906ABkZzNAJqJCGCBTSGJlNTSieNa0RlOsz1rv93IK0hNP6FLUN9yg5xkgxyX+ZlG4GCBTSPhFQuS81G6phZbDBliKLhDBGP2Pn1UWC7noohLa8IrDBVTiHH+zKFzMQSYiijEsRUdEZC+OIBMRxaBYKEXnBsYzglzaMtsltuFZgptjkUSJgyPIRA5KW5aG5PHJSBqbhOTxyXFbpouIiCiWcASZyCHeWrbePFJvLVsAHBkkIiJyEEeQiRzCWrZERETuxACZyCGsZUtERORODJCJHBKoZi1r2RIRETmLATKRQ1K7paJyucqFLkuEWracmEhERG7HAJnIIYlYy9Y7MXF91noIJH9iIoNkIiJyE1axIHJQotWyLWliYiK9DkRE5G4cQSaiqOHERCIiigUMkIkoajgxkYiIYgEDZCKKmkSdmOhmxpj80xjPP9/LjDFOd5GIKOoYIBNR1CTixES3E5FST0REiYaT9IgoqhJtYiK5gzFjne4CEcUQjiATEREREfngCDIREcUtkdElXj/WM7I8upTbEVFiYYBMRESWCTSpb4wZU+g8c5uJyM0YIBMRkWUY+BJRPGAOMhERERGRDwbIRA5KW5aG5PHJSBqbhOTxyUhbluZ0l4iIiBIeUyyIHJK2LA3Dpg9Ddk42AGB91noMmz4MAFgGjYiIyEEm3vLFOnXqJIsWLXK6G0SlSh6fjPVZ64td3qxGM6y7bV30O0SUIIJZHTDefhuJyD9jzGIR6VT0co4gEzkkMyszpMuJyBoMfomoNMxBJnJI0xpNQ7qciIiIooMBMpFDUrulonK5yoUuq1yuMlK7pTrUIyIiIgIYIBM5ZkibIZjQbwKa1WgGA4NmNZphQr8JnKBHRETkME7SIyIiIqKEFGiSHkeQiYiIiIh8MEAmIiIiIvLheIBsjBljjNlkjFnqOfXxue5+Y8waY8wqY8x5TvaTiIiIiBKDW+ogPy8iz/heYIxpBWAwgJMANAQw2xhzvIgccaKDRERERJQYHB9BLsEAAP8TkUMishbAGgBdHO4TEREREcU5t4wgjzTGXAlgEYA7RWQ3gEYA5vvcZqPnsmKMMcMADPOc3W+MWRXEY9YFsCP8LkelTfYxMdqzo81E7GMiPmc72kzEPibic7ajTbe3Z0eb7GPst9fM34VRCZCNMbMB1Pdz1SgArwF4FIB4/j4LYGgo7YvIBAATQuzTIn9lPSJhdZvsY2K0Z0ebidjHRHzOdrSZiH1MxOdsR5tub8+ONtnH+G0vKgGyiHQP5nbGmDcBfOk5uwlAE5+rG3suIyIiIiKyjeM5yMaYBj5nBwJY7vn/FwAGG2MqGGOaA2gBYEG0+0dEREREicUNOchPGWPaQVMs1gG4AQBEJMMY8xGAFQByAdxkcQWLkFIyHGqTfUyM9uxoMxH7mIjP2Y42E7GPific7WjT7e3Z0Sb7GKftxd1S00REREREkXA8xYKIiIiIyE0YIBMRERER+UjIANkY08uzfPUaY8x9FrT3tjHmX2PM8tJvHVR7TYwx3xljVhhjMowxt0bYXkVjzAJjzO+e9sZa1M8yxpjfjDFfln7roNpbZ4xZ5llyfJEF7dU0xnxijFlpjPnTGJMSYXsn+CyJvtQYs9cYc1uEbd7ueU+WG2M+NMZUjKQ9T5u3etrLCKd//j7Pxpjaxph0Y8xqz99aFrQ5yNPHPGNMSOV4ArT3tOe9/sMYM9UYU9OCNh/1tLfUGDPLGNMwkvZ8rrvTGCPGmLoR9m+MMWaTz2eyT7DtldRHY8zNntcywxjzVIR9nOLTv3XGmKWR9tEY084YM9/7XWGMCXoRqQDtnWyM+cXz/TPdGFM9hPb8fl9Hss2U0GZY20wJ7YW1zZTQXiTbS4m/e6FuMyX0MextpqQ+hrPNlNDHsLeZEtoMa5spob2wthkTIB4xxjQ3xvxqNC6bYowpH8JzDtTmSE97IX3X5hORhDoBKAPgbwDHACgP4HcArSJs80wAHQAst6iPDQB08Py/GoC/IukjAAOgquf/5QD8CuBUC/p5B4APAHxp0fNeB6Cuhe/1uwCu8/y/PICaFn+OtgJoFkEbjQCsBVDJc/4jAFdH2K/W0EowlaGTcGcDOC7ENop9ngE8BeA+z//vA/CkBW22BHACgLkAOlnQXk8AZT3/f9KiPlb3+f8tAF6PpD3P5U0AfANgfSif9wD9GwPgrgg+L/7aPMfzuangOX90pM/Z5/pnATxsQR9nAejt+X8fAHMjbG8hgLM8/x8K4NEQ2vP7fR3JNlNCm2FtMyW0F9Y2U0J7kWwvAX/3wtlmSuhj2NtMCW2Gtc2U9JzD3WZK6GNY20wJ7YW1zSBAPAL9/Rvsufx1ACNCeM6B2mwPIBlhxhaJOILcBcAaEflHRA4D+B90Weuwicg8ALus6JynvS0issTz/30A/kSAVQSDbE9EZL/nbDnPKaLZmcaYxgD6ApgYSTt2McbUgP4QvgUAInJYRPZY+BDdAPwtIusjbKcsgErGmLLQoHZzhO21BPCriGSLSC6A7wFcGEoDAT7PA6A7HPD8vSDSNkXkTxEJZtXLYNub5XnOgK7C2diCNvf6nK2CELabEr4XngdwTyhtldJe2AK0OQLAOBE55LnNvxG2BwAwxhgAlwD40II+CgDviFUNhLDdBGjveADzPP9PB3BRCO0F+r4Oe5sJ1Ga420wJ7YW1zZTQXiTbS0m/eyFvM1b/jpbSZljbTGl9DGebKaHNsLaZEtoLa5spIR45F8AnnstD3V78tikiv4nIumDbKSoRA+RGADb4nA+4hLUbGGOSoXtBv0bYThnPYZp/AaSLSETtARgP/cLKi7AdXwJgljFmsdHlwyPRHMB2AO8YTQOZaIypEnkX8w1GiD/0RYnIJgDPAMgEsAVAlojMirBfywF0NcbUMcZUho4UNCnlPsGoJyJbPP/fCqCeBW3aaSiAmVY0ZIxJNcZsADAEwMMRtjUAwCYR+d2KvnmM9BzWftuEmPoSwPHQz9CvxpjvjTGdLWgTALoC2CYiqy1o6zYAT3vel2cA3B9hexkoGCgZhDC3mSLf15ZsM1b9BgTRXljbTNH2rNhefNu0Ypvx85wj3maKtBnxNhPgfYlomynS5m2IcJsp0l7Y20zReAR6VH+Pz85ayHGZDTFOQgbIMcMYUxXApwBuK7JnHjIROSIi7aAjBF2MMa0j6Nf5AP4VkcWR9MmPM0SkA4DeAG4yxpwZQVtloYdRXxOR9gD+gx7mjJgnN6o/gI8jbKcW9AumOYCGAKoYY/4vkjZF5E/oodJZAL4GsBSAlfXDIXocy7X1IY0xo6C109OsaE9ERolIE097IyPoV2UADyDCILuI1wAcC6AddCfrWQvaLAugNvQQ5d0APvKMZEXqMkS4U+ljBIDbPe/L7fAcKYrAUAA3GmMWQw8jHw61gZK+r8PdZqz8DSipvXC3GX/tRbq9+Lbp6VNE24yfPka8zfhpM6JtpoT3Oextxk+bEW0zftoLe5spGo8AODGUvgTTZiQxjlciBsgxsYS1MaYc9MOYJiKfWdWuJ83gOwC9ImjmdAD9jTHroCkq5xpj3regb5s8f/8FMBW64YRrI4CNPnuRn0ADZiv0BrBERLZF2E53AGtFZLuI5AD4DMBpkXZORN4SkY4iciaA3dCcsUhtM55VLz1/gz7sHk3GmKsBnA9giCcosVIaQjj07sex0J2h3z3bTmMAS4wx9cNtUES2eX4Y8gC8ici2Ga+NAD7zHLZcAD1KFPoEFx+eFKILAUyxoH8AcBV0ewF0RzWi5y0iK0Wkp4h0hAYkf4dy/wDf1xFtM1b/BgRqL9xtJoj+hby9+Gkzom3GXx8j3WYCPO+wt5kS3pewt5kAbYa9zQR4HSPaZjxt7IHGIykAanqeMxBBXGZRjAMgMQPkhQBaeGZMloceKv/C4T4V4tnzfAvAnyLynAXtHWU8s5ONMZUA9ACwMtz2ROR+EWksIsnQ1+9bEYlo5NMYU8UYU837f+jkkbCrgojIVgAbjDEneC7qBl2V0QpWjYRlAjjVGFPZ8553g+Z3RcQYc7Tnb1PoF+wHkbYJ3Uau8vz/KgCfW9CmpYwxvaBpP/1FJNuiNlv4nB2AyLabZSJytIgke7adjdDJL1sj6F8Dn7MDEcE242MadNIRjDHHQye47oiwze4AVorIxgjb8doM4CzP/88FEFHahs82kwTgQegkoWDvG+j7OuxtxobfAL/thbvNlNBe2NuLvzYj2WZK6GPY20wJ78s0hLHNlPI+h7XNlNBmWNtMCa9jWNtMgHjkT2hQe7HnZqFuL5bGOPkkjJmcsX6C5mX+Bd3jGWVBex9CD9XkQDfgayNs7wzo4bg/oIfIlwLoE0F7bQH85mlvOUKcRV5K22fDgioW0Koiv3tOGRa9L+0ALPI872kAalnQZhUAOwHUsOj1G+vZkJcDeA+eWdARtvkDdGfgdwDdwrh/sc8zgDoA5kC/VGcDqG1BmwM9/z8EYBuAbyJsbw10foF3mwl6Bn0JbX7qeW/+ADAdOhEp7PaKXL8OoVWx8Ne/9wAs8/TvCwANLHjO5QG873neSwCcG+lzBjAJwPAwP8/++ngGgMWez/ivADpG2N6t0N+EvwCMA3SV2SDb8/t9Hck2U0KbYW0zJbQX1jZTQnuRbC+l/u6Fss2U0Mewt5kS2gxrmynpOSPMbaaEPoa1zZTQXljbDALEI9AYYIHnM/kxQvgtLKHNW6DbSy50B2FiKK8ll5omIiIiIvKRiCkWREREREQBMUAmIiIiIvLBAJmIiIiIyAcDZCIiIiIiHwyQiYiIiIh8MEAmInIBY4z4LrhjjClrjNlujPmylPvVNMbcGET7hW5njGlojPkksl4TEcUnBshERO7wH4DWnkL3gBa7D2Y1qZoASg2Qi95ORDaLyMWBb05ElLgYIBMRuccMAH09/y+0YqMxZowx5i6f88uNMcnQIv3HGmOWGmOeNsZUNcbMMcYsMcYsM8YM8Nyl6O2SjTHLPW1VNMa847n9b8YY76pgVxtjPjPGfG2MWW2MecpzeRljzCRPH5YZY263+4UhIoqmsqXfhIiIouR/AB72pFW0BfA2gK6l3Oc+AK1FpB2gqRkABorIXmNMXQDzjTFf+Lldsk8bNwEQEWljjDkRwCzPkrmArkjZHrp62ypjzEsAjoauktba01bNSJ40EZHbcASZiMglROQPAMnQ0eMZYTZjADxujPkDusRxIwD1SrnPGdClciEiKwGsB+ANkOeISJaIHIQuYd4MwD8AjjHGvGSM6QVgb5h9JSJyJQbIRETu8gWAZ+CTXuGRi8Lf2RUD3H8IgKMAdPSMFm8r4bbBOOTz/yMAyorIbgAnA//fvh2qRBREcRj/jl18AEHxFfaBxOgrCBajVVCL6BNsMlgFMQi2RVCTwbSwySS7cAzOwkG8RYODfL8498xwpv0ZzuUa2AXOfnG+JHXHgCxJfTkHDjJz8mX9BRgBRMQI2Grrb8BqqVsDppk5b7PEmwN11Q2fwZo2WrEBPA012EY3VjJzDOwv+5Kk/8IZZEnqSGa+AkfffBoD2xHxANwBz61+FhG37Ye7K+AQuIyICXAPPA7UHZezT4DTtmcB7GTme0QMtbkOXETE8pFl7+c3lqT+RGb+dQ+SJElSNxyxkCRJkgoDsiRJklQYkCVJkqTCgCxJkiQVBmRJkiSpMCBLkiRJhQFZkiRJKj4AK3ewCXNYhOIAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 720x504 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"comp_name = '1BRS_A_D'\n",
"DoBoxPlot(comp_name, features_mt)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Different types of analysis:\n",
"- Changes of the binding affinity with respect to the region of point mutation (CORE, SUP, RIM introduced by [E. D. Levy, 2010]).\n",
"- Classification of changes of binding affinity based on favorable, deleterious, and neutral mutations."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
File added
new_wt.gif

1.58 MB

Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment